摘要:
The present techniques provide light emitting assemblies that include two or more light emitting devices joined into a single multilayered structure. Each device is electrically contiguous, and includes an electroluminescent polymer layer between two electrodes. In each device, the electroluminescent polymer layer and/or at least one of the two electrodes is patterned to form an illuminated design. Each device may be separately energized to illustrate a different pattern or design. In some embodiments, a layer having a contiguous light emitting layer may be attached to the back of the multilayer structure.
摘要:
The present techniques provide methods and systems for forming devices that may be formed from light emitting regions of electroluminescent organic materials. The small size of the light emitting regions allows the formation of blended colors, which may be formed into illuminated designs. Multiple devices may be joined together to form multilayer panels, where nearer layers may have different designs than farther layers, or farther layers may have solid illuminated colors useful as backgrounds for nearer layers. Further, the multilayer devices may be used as color tunable light sources.
摘要:
Described herein is a transparent electrode comprising at least one optically transparent electrically conductive layer; and at least one optically transparent intermediate layer, wherein said optically transparent conductive layer is in contact with said optically intermediate layer, and wherein said optically transparent conductive layer and said optically transparent intermediate layer together transmit at least 50 percent of incident light having a wavelength in a range between about 200 and about 1200 nanometers, said optically transparent conductive layer having a bulk conductivity at least 100 Siemens per centimeter (S/cm), said optically transparent intermediate layer being comprised of a material having a bulk electrical conductivity at room temperature less than 10−12 Siemens per centimeter and a band gap of 3.5 eV. Described herein are also methods for forming a transparent electrode, and transparent electronic devices comprising at least one transparent electrode.
摘要:
The present invention provides electronic devices comprising novel polymer compositions which provide for enhanced device performance. The polymer compositions employed comprise a polymeric component and a novel organic iridium compound comprising at least one cyclometallated ligand and at least one ketopyrrole ligand. The organic iridium compounds used in the polymer compositions are referred to as Type (1) organic iridium compositions and are constituted such that no ligand of the novel organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). In one aspect, the polymeric component may be an electroactive polymer. In one aspect, the present invention provides optoelectronic devices, such as OLED devices and photovoltaic devices. In another aspect, the invention provides OLED devices exhibiting enhanced color properties and light output efficiencies.
摘要:
The invention includes embodiments that relate to a method of making an organic light-emitting device comprising at least one bilayer structure. The method comprises providing at least one first layer comprising at least one cross-linkable organic material and at least one photo acid generator; exposing the first layer to a radiation source to afford a cross-linked first layer; and disposing at least one second layer on the cross-linked first layer. The method affords a bilayer structure having an enhanced structural integrity relative to the corresponding bilayer structure in which the first layer is not cross-linked. The invention also includes embodiments that relate to an organic light emitting device.
摘要:
Disclosed is an opto-electroactive device comprising a metallocene of the formula wherein M is zirconium or hafnium; X is halogen and R1–R5 are each independently hydrogen, aryl, alkyl, halogen or —Si(R6)3; or wherein at least two adjacent R substituents on at least one ring are joined to form a fused ring, which may be unsubstituted or substituted with aryl, alkyl, halogen or —Si(R6)3; or wherein the R1 substituents on each ring are joined to link the rings in an ansa bridge, and wherein R6 is an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group. Also disclosed is a method for making an opto-electroactive device comprising a metallocene.
摘要:
Disclosed is a polymer composition derived from a bis-phenol comprising a conjugated aromatic radical, optionally comprising nitrogen. Suitable bis-phenols as well as methods for making said polymer are also disclosed. Also disclosed are electroactive layers comprising said polymer and electroactive devices comprising said layer.
摘要:
Disclosed is an opto-electroactive device comprising a metallocene of the formula wherein M is zirconium or hafnium; X is halogen and R1-R5 are each independently hydrogen, aryl, alkyl, halogen or —Si(R6)3; or wherein at least two adjacent R substituents on at least one ring are joined to form a fused ring, which may be unsubstituted or substituted with aryl, alkyl, halogen or —Si(R6)3; or wherein the R1 substituents on each ring are joined to link the rings in an ansa bridge, and wherein R6 is an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group. Also disclosed is a method for making an opto-electroactive device comprising a metallocene.
摘要:
The present invention is directed to an organic light emitting device capable of white light emissions and a method for making the same. According to one embodiment, the invention relates to an organic light emitting device capable of white light emissions, the device comprising at least one light emissive polymer and at least one small molecule material in two layers adjacent to each other, wherein the at least one small molecule material has a wide enough bandgap and a high enough electron mobility to function as both a hole blocking layer and an electron transport layer.
摘要:
Lasers comprising a substrate and a layer of organic material over the substrate. The organic material includes host and dopant materials that result in the laser emission of a desired color when pumped by optical pump energy. Host materials include CBP and tris-(8-hydroxyquinoline) aluminum, which when combined with dopant materials such as coumarin-47, coumarin-30, perylene, rhodamine-6G, DCM, DCM2, and pyrromethane-546 result in the efficient lasing of colors such as blue, green and yellow.