摘要:
A semiconductor device includes a superjunction structure. The influence of external charge on device performance is suppressed using a shield electrode, field plate electrodes, and cover electrodes in various configurations. Optional embodiments include placing an interconnection film between certain electrodes and the upper surface of the superjunction structure. Cover electrodes may also be connected to various potentials to limit the effects of external charge on device performance.
摘要:
A power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type having an effective impurity concentration that is less than an effective impurity concentration of the first semiconductor layer arranged on the first semiconductor layer, a third semiconductor layer of a second conductivity type arranged on the second semiconductor layer, and a gate electrode formed in the first second semiconductor layer and the third semiconductor layer, wherein at least two regions are formed in the power semiconductor device, and a threshold voltage of the first region is different from a threshold voltage of the second region.
摘要:
A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
摘要:
A semiconductor device includes a superjunction structure. The influence of external charge on device performance is suppressed using a shield electrode, field plate electrodes, and cover electrodes in various configurations. Optional embodiments include placing an interconnection film between certain electrodes and the upper surface of the superjunction structure. Cover electrodes may also be connected to various potentials to limit the effects of external charge on device performance.
摘要:
A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
摘要:
A power semiconductor device includes: a first semiconductor layer; a second semiconductor layer and a third semiconductor layer provided in an upper portion of the first semiconductor layer and alternately arranged parallel to an upper surface of the first semiconductor layer; a plurality of fourth semiconductor layers provided on the third semiconductor layer; a fifth semiconductor layer selectively formed in an upper surface of each of the fourth semiconductor layers; a control electrode; a gate insulating film; a first main electrode provided on a lower surface of the first semiconductor layer; and a second main electrode provided on the fourth and the fifth semiconductor layers. Sum of the amount of impurities in the second semiconductor layer and the amount of impurities in the third semiconductor layer at an end on the second main electrode side of the second semiconductor layer and the third semiconductor layer is smaller than the sum at a center of the second semiconductor layer and the third semiconductor layer in the direction from the first main electrode to the second main electrode.
摘要:
A semiconductor device includes an n+ type semiconductor substrate 1 and a super junction region that has, on the top of the substrate 1, an n and p type pillar regions 2 and 3 provided alternately. The device also includes, in the top surface of the super junction region, a p type base region 4 and an n type source layer 5. The device also includes a gate electrode 7 on the region 4 and layer 5 via a gate-insulating film 6, a drain electrode 9 on the bottom of the substrate 1, and a source electrode 8 on the top of the substrate 1. In the top surface of the super junction region in the terminal region, a RESURF region 10 is formed. The RESURF region has a comb-like planar shape with repeatedly-formed teeth having tips facing the end portion of the terminal region.
摘要:
A semiconductor device includes a super junction region that has a first-conductivity-type first semiconductor pillar region and a second-conductivity-type second semiconductor pillar region alternately provided on the semiconductor substrate. The first semiconductor pillar region and the second semiconductor pillar region in a termination region have a lamination form resulting from alternate lamination of the first semiconductor pillar region and the second semiconductor pillar region on the top surface of the semiconductor substrate. The first semiconductor pillar region and/or the second semiconductor pillar region at a corner part of the termination region exhibit an impurity concentration distribution such that a plurality of impurity concentration peaks appear periodically. The first semiconductor pillar region and/or the second semiconductor pillar region at a corner part of the termination region have an impurity amount such that it becomes smaller as being closer to the circumference of the corner part.
摘要:
A semiconductor device includes: a semiconductor layer of a first conductivity type; a first semiconductor pillar region of the first conductivity type provided on a major surface of the semiconductor layer; a second semiconductor pillar region of a second conductivity type provided adjacent to the first semiconductor pillar region on the major surface of the semiconductor layer, the second semiconductor pillar region forming a periodic arrangement structure substantially parallel to the major surface of the semiconductor layer together with the first semiconductor pillar region; a first main electrode; a first semiconductor region of the second conductivity type; a second semiconductor region of the first conductivity type; a second main electrode; a control electrode; and a high-resistance semiconductor layer provided on the semiconductor layer in an edge termination section surrounding the first semiconductor pillar region and the second semiconductor pillar region. The high-resistance semiconductor layer has a lower dopant concentration than the first semiconductor pillar region. A boundary region is provided between a device central region and the edge termination section. The first semiconductor pillar region and the second semiconductor pillar region adjacent to the high-resistance semiconductor layer in the boundary region have a depth decreasing stepwise toward the edge termination section.
摘要:
A semiconductor apparatus includes a first semiconductor layer, a second semiconductor layer provided on a major surface of the first semiconductor layer, a third semiconductor layer provided on the major surface and being adjacent to the second semiconductor layer, a termination semiconductor layer provided on the major surface of the first semiconductor layer in a termination region outside the device region, a channel stop layer, and a channel stop electrode. The channel stop layer is provided in contact with the termination semiconductor layer on the major surface of the first semiconductor layer in an outermost peripheral portion outside the termination semiconductor layer and has a higher impurity concentration than the termination semiconductor layer. The channel stop electrode is provided on at least part of a surface of the channel stop layer and projects toward the termination semiconductor layer beyond at least a superficial portion of the channel stop layer.