摘要:
The present invention provides an anion exchange resin capable of producing an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a battery electrode catalyst layer. The anion exchange resin of the present invention has a hydrophobic unit, a hydrophilic unit and divalent fluorine-containing groups. The hydrophobic unit has divalent hydrophobic groups composed of one aromatic ring or a plurality of aromatic rings that are repeated via carbon-carbon bond. The hydrophilic unit has divalent hydrophilic groups composed of one aromatic ring or a plurality of aromatic rings, at least one of which has an anion exchange group, that are repeated via carbon-carbon bond. The divalent fluorine-containing groups have a specific structure and are bonded via carbon-carbon bond to the hydrophobic unit and/or the hydrophilic unit and/or a moiety other than these units.
摘要:
An anion exchange resin having a hydrophobic unit with divalent hydrophobic groups bonded to each other via an ether bond, the divalent hydrophobic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group, carbon-carbon bond or the like; and a hydrophilic unit having divalent hydrophilic groups bonded to each other via carbon-carbon bond, the divalent hydrophilic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group or carbon-carbon bond, the aromatic ring or at least one of the aromatic rings having an anion exchange group are bonded via carbon-carbon bond.
摘要:
The present invention aims to provide a hydrocarbon-based polymer electrolyte which is excellent in processability and proton conductivity, especially proton conductivity at low water content, and a membrane thereof. The polymer electrolyte contains, in its main chain, a repeating unit represented by the following formula (1): wherein Ar represents a benzene or naphthalene ring, or a derivative thereof in which one or more of the ring-forming carbon atoms is replaced by a hetero atom; X represents a proton or a cation; a and b are each an integer of 0 to 4, and the sum of a's and b's is 1 or greater; m represents an integer of 1 or greater; and n represents an integer of 0 or greater.
摘要:
Separators of multiple types capable of supplying and diffusing fluids such as an anode gas, cathode gas and coolant uniformly are prepared and combined to construct a fuel cell stack. Such a cell stack (20) for fuel cells includes separators of at least two types (types CA, C, A, C, CW and AW) for anode gas and cathode gas. Each separator is such that a corrosion-resistance layer is formed on at least one face of a metal plate (30) and a fluid supply and diffusion layer for the corresponding gas is formed by an electrically conductive porous layer on the corrosion-resistant layer. The at least two separators are stacked so as to face each other with at least an electrolyte membrane and catalyst layers on both sides of the membrane (a new membrane electrode assembly N-MEA) being sandwiched between the fluid supply and diffusion layers of the separators.
摘要:
The first object is to increase the life of a selective CO methanation catalyst, and the second object is to enhance the CO removal rate of a selective CO methanation catalyst to reduce the outlet CO concentration in a wide temperature range. Provided a selective CO methanation catalyst including a supported metal catalyst which selectively methanizes CO in a hydrogen-rich gas containing CO and CO2 and a coating layer which covers a surface of the supported metal catalyst, has many pores, and is configured to reduce a CO concentration on the surface of the supported metal catalyst.
摘要:
Provided is a method for efficiently manufacturing fine metal particles applicable as a fuel cell electrode catalyst. Provided is a method of manufacturing fine metal particles, including the step of: a hydrogen bubbling step to perform bubbling to a reaction solution, wherein: the reaction solution is prepared by allowing seeds of fine metal particles in a dispersed state and a water soluble noble metal precursor to co-exist in a water-containing solvent; and the bubbling is performed with a reaction gas containing a hydrogen gas, is provided.
摘要:
Provided is a method for efficiently manufacturing fine metal particles applicable as a fuel cell electrode catalyst. Provided is a method of manufacturing fine metal particles, including the step of: a hydrogen bubbling step to perform bubbling to a reaction solution, wherein: the reaction solution is prepared by allowing seeds of fine metal particles in a dispersed state and a water soluble noble metal precursor to co-exist in a water-containing solvent; and the bubbling is performed with a reaction gas containing a hydrogen gas, is provided.
摘要:
Provided is a hydrogen refining pressure-boosting device which is durable even in a high-pressure environment. This hydrogen refining pressure-boosting device produces, from a hydrogen-containing gas, a refined hydrogen gas having higher pressure and higher purity than the hydrogen-containing gas. The hydrogen refining pressure-boosting device is equipped with multiple stacked cell structures, and a pressing structure that applies tightening stress in the direction in which the cell structures are stacked. In this hydrogen refining pressure-boosting device the flow path surface of a cathode-side separator is sized so as to be contained on the inside of the flow path surface of an anode-side separator, in the direction of a plane parallel to a solid polymer electrolyte membrane.
摘要:
The first object is to increase the life of a selective CO methanation catalyst, and the second object is to enhance the CO removal rate of a selective CO methanation catalyst to reduce the outlet CO concentration in a wide temperature range. Provided a selective CO methanation catalyst including a supported metal catalyst which selectively methanizes CO in a hydrogen-rich gas containing CO and CO2 and a coating layer which covers a surface of the supported metal catalyst, has many pores, and is configured to reduce a CO concentration on the surface of the supported metal catalyst.
摘要:
A fuel cell gas supply and diffusion layer includes a sheet-like porous body layer, and a plurality of gas passage grooves formed on one surface of the porous body layer in parallel and formed in a zigzag shape or a wave shape respectively. As viewed in a plan view, a first rectangular region where circumscribes one gas passage groove and a second rectangular region where circumscribes a gas passage groove adjacent to the one gas passage groove overlap along a region in contact each other. An overlapping region where the first rectangular region and the second rectangular region overlap exists at any depth position of the grooves. According to the fuel cell gas supply and diffusion layer, it is possible to increase a power generation efficiency of a fuel cell.