Abstract:
A method of forming tooling for fabricating a part made from a metal powder is described herein. The method includes forming a first sheet and second sheet. The first sheet includes a first protrusion defining a first cavity and a first flange extending about the first protrusion. The second sheet includes a second flange. Additionally, the method includes arranging the first sheet and the second sheet to abut together the first flange of the first sheet and the second flange of the second sheet and to define an enclosure. The enclosure includes a void defined between the first cavity of the first sheet and the second sheet. The void has a shape of the part. The method further includes welding together the first flange of the first sheet and the second flange of the second sheet along a portion of the first flange spaced away from the first protrusion.
Abstract:
Examples are provided herein that relate to solar heating with a solar refraction device. One example provides a solar heating system, comprising a container configured to enclose contents within the container in a closed configuration, and a solar refraction device comprising a lens array assembly having a plurality of lens array sub-assemblies, the lens array assembly configured to refract solar energy impinging on the lens array assembly to focus refracted solar energy at a plurality of focal points positioned to heat the contents enclosed within the container, each focal point corresponding to a corresponding lens array sub-assembly of the plurality of lens array sub-assemblies.
Abstract:
Examples are provided herein that relate to solar heating with a solar refraction device. One example provides a solar heating system, comprising a container configured to enclose contents within the container in a closed configuration, and a solar refraction device comprising a lens array assembly having a plurality of lens array sub-assemblies, the lens array assembly configured to refract solar energy impinging on the lens array assembly to focus refracted solar energy at a plurality of focal points positioned to heat the contents enclosed within the container, each focal point corresponding to a corresponding lens array sub-assembly of the plurality of lens array sub-assemblies.
Abstract:
Methods for processing workpieces. A first temperature of a first section of a workpiece having a non-uniform thickness may be maintained. A cooling rate of a second section of the workpiece may be controlled while maintaining the first temperature of the first section. The workpiece may be quenched after cooling the second section of the workpiece to form a quenched workpiece, in which the cooling rate may be controlled such that the second section of the workpiece has desired properties.
Abstract:
Provided are wingtip torque boxes and methods of fabricating such boxes using friction stir welding. Specifically, a wingtip torque box may be formed by friction stir welding two monolithic clamshells along their respective spars thereby forming a new monolithic structure. Use of the friction stir welding and monolithic clamshells simplifies the overall fabrication process and yields a robust wingtip torque box that can be bolted on or otherwise attached to an aircraft wing. The wingtip torque box may include internal grid stiffeners and/or external stiffeners that may be also monolithic with other components of the box. For example, the stiffeners may be machined in spars or skin portions of the clamshells during fabrication of clamshells. The wingtip torque box may have a continuous cavity extending between the ends and, in some embodiments, between spars of the box and providing access for performing various operations inside the box.
Abstract:
A method of forming tooling for fabricating a part made from a metal powder is described herein. The method includes forming a first sheet and second sheet. The first sheet includes a first protrusion defining a first cavity and a first flange extending about the first protrusion. The second sheet includes a second flange. Additionally, the method includes arranging the first sheet and the second sheet to abut together the first flange of the first sheet and the second flange of the second sheet and to define an enclosure. The enclosure includes a void defined between the first cavity of the first sheet and the second sheet. The void has a shape of the part. The method further includes welding together the first flange of the first sheet and the second flange of the second sheet along a portion of the first flange spaced away from the first protrusion.
Abstract:
A unitized assembly may comprise a fiber metal laminate and at least one additive layer. The fiber metal laminate may have non-metallic plies bonded to metallic plies and may include an innermost metallic ply. The at least one additive layer may be deposited onto the innermost metallic ply by friction stir welding.
Abstract:
Forging dies are formed from a plurality of layers stacked together to form an assembly, or laminate. Each respective layer may be cut to form a portion of a die cavity, and the layers may be stacked together such that the cut portions are aligned to form the die cavity. The layers are fastened together to form a first die half and/or a second die half of disclosed forging dies. Each layer may be selectively removable from the die half for maintenance and/or replacement. Disclosed forging dies may be formed of lower grade materials as compared to conventional forging dies, and the number and thickness of layers may be varied to accommodate the specific part geometry of the part being forged. Related methods of making said forging dies and using said forging dies to make parts are also disclosed.
Abstract:
A method and apparatus for processing workpieces to form parts. Tools associated with a multi-spindle machine may be positioned with respect to a plurality of workpieces on a fixture comprising a plurality of platforms and an adjustment system. Each platform may be individually moveable with respect to others in the plurality of platforms about a number of axes. The plurality of platforms may be configured to hold the plurality of workpieces in which each platform may be configured to hold a workpiece in the plurality of workpieces during operations performed by the multi-spindle machine. The adjustment system may be configured to move each of the plurality of platforms about the number of axes independently from the others in the plurality of platforms. The operations may be performed on the plurality of workpieces using the multi-spindle machine and the fixture to form a plurality of parts.
Abstract:
A ceramic die for a hot press is provided, along with a method of constructing a ceramic die. The ceramic die includes a ceramic die body defining a mold surface configured to shape a part during a superplastic forming process. The mold surface defines at least one curved surface and at least one non-curved surface, spaced apart from the at least one curved surface. The ceramic die also includes a plurality of fibers disposed within the ceramic die body. The plurality of fibers may be preferentially located proximate the at least one curved surface such that a first portion of the ceramic die body proximate the at least one curved surface has a greater percentage of fibers than a second portion of the ceramic die body proximate the at least one non-curved surface.