Abstract:
Material-Sensing Light Imaging, Detection, And Ranging (LIDAR) systems optionally include a laser configured to generate a light pulse, a beam steerer configured to produce a polarization-adjusted light pulse emitted towards an object, at least one polarizer configured to polarize reflected, scattered, or emitted light returned from the object, and a processor configured to detect at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object. The beam steerer may include a kirigami nanocomposite. Methods are also provided, including, for example, generating a light pulse, adjusting a polarization of the light pulse to produce a polarization-adjusted light pulse emitted towards an object, polarizing reflected, scattered, or emitted light returned from the object, and detecting at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object.
Abstract:
The present disclosure provides a method of fabricating an implantable micro-component electrode. The method includes disposing an electrically non-conductive material directly onto a surface of an electrically conductive carbon fiber core to generate an electrically non-conductive coating on the electrically conductive carbon fiber core, and removing a portion of the electrically non-conductive coating to expose a region of the electrically conductive carbon fiber core. The micro-component electrode has at least one dimension of less than or equal to about 10 μm.
Abstract:
Methods and devices for detecting chiral properties from a sample are provided. Light may be directed towards a sample in contact with a chiral nanoparticle. Third harmonic Mie scattering (THMS) optical activity generated by the chiral nanoparticle in contact with the sample can then be detected. A device for detecting chiral properties of a sample is also contemplated that includes at least one microwell having a volume of ≤about 1 microliter configured to hold a chiral nanoparticle capable of generating third harmonic Mie scattering (THMS) optical activity and a sample to be analyzed. The device includes a source of light configured to generate and direct light toward the at least one microwell containing the chiral nanoparticle and the sample and at least one detector configured to detect third harmonic Mie scattering (THMS) generated by the chiral nanoparticle in the microwell.
Abstract:
Ion conducting membranes based on aramid nanofibers (ANFs) can be prepared using layer-by-layer assembly, sol-gel processing, evaporation, spin coating, doctor blading, or other methods. Porosity is controlled through choice of additives and processing.
Abstract:
Systems and methods for object and material recognition are provided and include a hyperspectral infrared camera that captures a three-dimensional image of an object and black-body emissions data indicating a polarization of black-body radiation emitted from the object. An image processing device accesses a database of expected polarization signatures of black-body emissions from materials at different temperatures and determines a material of the object based on (i) the black-body emissions data indicating the polarization of the black-body radiation emitted from the object, (ii) an ambient temperature of the environment of the system, and (iii) the database of expected polarization signatures of black-body emissions from a plurality of materials for different temperatures.
Abstract:
Self-assembly methods are provided for making hedgehog-shaped microparticles or nanoparticles. The method may comprise combining a metal-containing (e.g., Fe, Au) precursor, a chalcogen-containing precursor (e.g., Se, S), and a self-assembly additive (e.g., dodecanethiol (DT), oleylamine (OLA), hexadecyltrimethylammonium bromide (CTAB)). At least one hedgehog-shaped nanoscale, mesoscale, or microscale particle is formed that defines a core region formed of a first material and a plurality of needles connected to and substantially orthogonal to a surface of the core region. The needles comprise a second material. At least one of the first or the second material comprises iron or gold and optionally selenium or sulfur, for example, iron diselenide (FeSe2). Hedgehog-shaped microparticles or nanoparticles formed from such self-assembly methods are also provided. The semiconductor nature of FeSe2 hedgehog-shaped particles enables their utilization in biomimetic catalysis, drug delivery, optics, and energy storage, by way of non-limiting example.
Abstract:
The present disclosure provides a biomimetic composite that includes a plurality of nanostructures each having at least one axial geometry region comprising an inorganic material. The nanostructures may be a plurality of substantially aligned (e.g., in a vertical orientation) axial geometry nanowires comprising zinc oxide or alternatively hedgehog-shaped nanoparticles with needles comprising zinc oxide. A polymeric matrix disposed in void regions defined between respective nanostructures of the plurality of nanostructures. The biomimetic composite exhibits a viscoelastic figure of merit (VFOM) of greater than or equal to about 0.001 up to about 0.6 or greater. Methods of making such biomimetic composites are also provided.
Abstract:
Multidimensional Light Imaging, Detection, and Ranging (LIDAR) systems and methods optionally include a laser device configured to generate a plurality of light pulses emitted towards an object, a detector configured to receive a portion of the plurality of light pulses returned from the object, and a processor configured to generate a point cloud representing the object based on the plurality of light pulses received by the detector, the point cloud having a plurality of points, each point having a three−dimensional positional coordinate representing a location of the point on the object and having at least one additional value representing at least one of material information indicating a material of the object at the location of the point on the object or optical information indicating at least one optical characteristic of the plurality of light pulses returned from the surface of the object from the location of the point on the object.
Abstract:
A composite solid electrolyte for a solid-state electrochemical cell is provided. The electrolyte may include a plurality of aramid nanofibers, such as a branched aramid nanofiber network, an ionically conductive polymer, such as poly(ethylene oxide) or quaternary ammonia functionalized polyvinyl alcohol (QAFPVA), and an optional divalent ion salt. The electrolyte is particularly suitable for use with zinc ions, where the divalent ion salt may comprise zinc trifluoromethanesulfonate Zn(CF3SO3)2 An electrochemical cell or battery is provided incorporating such a composite solid electrolyte that cycles ions, such as zinc ions or hydroxide ions, suppresses or minimizes dendrite formation, while having good ionic conductivity and being flexible. This flexibility provides the ability to create deformations in the electrochemical cell, such as protrusions and recesses that may define a corrugated pattern. Such a battery may be a rechargeable structural battery with a corrugated surface profile that can be used to form load-bearing structural components.
Abstract:
Kirigami-based optic devices are provided that include a tunable kirigami-based component comprising a plurality of bridge structures and a plurality of openings therebetween to form a grating structure. At least one surface of the kirigami-based component is micropatterned with a plasmonic material so that the grating is configured to induce or modulate rotational polarity of a beam of electromagnetic radiation as it passes through the plurality of openings. In certain aspects, the micropattern may be a gold herringbone pattern. The kirigami-based component has tunable 3D topography, which when stretched, exhibits polarization rotation angles as high as 80° and ellipticity angles as high as 34° due to the topological equivalency of helix. The kirigami-based components are compact electromagnetic modulators and can be used in THz circular dichroism (TCD) spectroscopy, for example, in a stacked configuration as a modulator, as an encryptor/decryptor for secure communication, in biomedical imaging, and LIDAR systems.