摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 glee to 0.960 glee, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 glee to 0.960 Wee and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SET) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
摘要翻译:公开了一种双峰型齐格勒 - 纳塔催化聚乙烯,其密度为0.930gle-0.960glee,分子量分布为10-25,其中由其形成的制品具有至少为1500的PENT。还公开了一种方法 制备管状制品,包括获得密度为0.930glee至0.960ee的分子量分布为10至25的双峰聚乙烯,并且在比能量输入(SET)小于300kW的条件下处理聚乙烯 h / ton,并且其中制品具有至少1500的PENT。还公开了一种控制聚乙烯降解的方法,包括聚合乙烯单体,回收聚乙烯,挤出聚乙烯,并通过测量SEI来控制聚乙烯的降解 到挤出机并调节产量和/或齿轮吸入压力使SEI小于300kW.h / ton,并形成物品。
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Process for the preparation of a hydroperoxide functionalized olefinic compound in an oxidation reactor containing a particulate catalyst bed comprising a light induced photosensitized catalyst component supported on a particulate substrate material forming a permeable catalyst bed. The photoenergized catalyst component is a photoreductant material which is effective for the conversion of triplet oxygen to singlet oxygen under illumination with ultraviolet or visible light. An oxygen containing feed stream containing triplet oxygen is supplied to the catalyst bed. The catalyst bed is irradiated at an intensity to convert triplet oxygen to singlet oxygen to produce a singlet oxygen enriched gas stream. The enriched gas stream is supplied to a second reactor which contains a dispersion of an olefinic component having an allylic hydrogen which is contacted with the enriched gas stream under conditions effective to cause an allylic rearrangement and introduce hydroperoxide functionalization into the olefinic component.
摘要:
A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
摘要翻译:一种制备聚苯乙烯共混物的方法,其包括将具有第一熔体流动指数的第一聚苯乙烯组合物与具有第二熔体流动指数的第二聚苯乙烯组合物组合并形成聚苯乙烯共混物,所述第二熔体流动指数至少为2dg / min 第一个熔体流动指数。 聚苯乙烯共混物的观测拉伸强度值大于预期拉伸强度值的3%以上。 第二聚苯乙烯组合物可以包括再循环的聚苯乙烯材料,其可以包括发泡聚苯乙烯。 制备聚苯乙烯共混物的替代方法包括将聚苯乙烯组合物与苯乙烯单体组合以形成反应混合物,使反应混合物聚合并获得聚苯乙烯共混物,其中含聚苯乙烯的组合物的熔体流动指数至少为2dg / min 比苯乙烯单体聚合后的熔体流动指数高。
摘要:
An accelerated method of determining the failure time of a polyethylene resin by determining the minimum displacement rate, or the time at minimum displacement rate, using ASTM F 1473-01, then following one of these routes: (1) If failure has not yet occurred, cryogenically fracturing the resin specimen and examining it for slow crack growth to determine whether the anticipated, or desired, failure time is generally before or after the predicted failure time; or (2) Applying the minimum displacement rate, or the time at minimum displacement rate, in the appropriate mathematical formula to predict the failure time for the resin. The mathematical formula is derived from the discovery of a power law relationship between the failure time and minimum displacement rate, or between failure time and the time at minimum displacement rate. Thus, it is not necessary to actually test all the way to failure using ASTM F 1473-01, thereby accelerating testing capability and consequently enabling more rapid development of new resins.
摘要翻译:通过使用ASTM F 1473-01确定最小位移速率或最小位移速率的时间来确定聚乙烯树脂的故障时间的加速方法,然后遵循以下路线之一:(1)如果还没有发生故障 对树脂样品进行低温压裂并检查其是否有缓慢的裂纹扩展,以确定预期的或期望的故障时间是否通常在预测的故障时间之前或之后; 或(2)以适当的数学公式应用最小位移速率或最小位移速率时间来预测树脂的失效时间。 数学公式是从发现故障时间和最小位移速率之间的幂律关系,或者在故障时间与最小位移速率时间之间发现的。 因此,不需要使用ASTM F 1473-01实际测试所有的故障,从而加快了测试能力,从而可以更快速地开发新型树脂。
摘要:
A process for producing high impact polystyrene including feeding at least one vinyl aromatic monomer, an elastomer, and a free radical initiator to a first linear flow reactor to form a reaction mixture. Polymerizing the reaction mixture in the first linear flow reactor to a point below the point at which phase inversion occurs to produce a first polymerization mixture and feeding the first polymerization mixture from the first linear flow reactor to a second linear flow reactor. Polymerizing the reaction mixture in the second linear flow reactor to at least a phase inversion point of the mixture to produce a second polymerization mixture and feeding the second polymerization mixture from the second linear flow reactor to at least a third linear flow reactor for post-inversion polymerization of the second polymerization mixture. The product stream can have an ESCR value of at least 10% toughness retained with less than 10 wt % rubber content.
摘要:
A process for producing high impact polystyrene including feeding at least one vinyl aromatic monomer, an elastomer, and a free radical initiator to a first linear flow reactor to form a reaction mixture. Polymerizing the reaction mixture in the first linear flow reactor to a point below the point at which phase inversion occurs to produce a first polymerization mixture and feeding the first polymerization mixture from the first linear flow reactor to a second linear flow reactor. Polymerizing the reaction mixture in the second linear flow reactor to at least a phase inversion point of the mixture to produce a second polymerization mixture and feeding the second polymerization mixture from the second linear flow reactor to at least a third linear flow reactor for post-inversion polymerization of the second polymerization mixture. The product stream can have an ESCR value of at least 10% toughness retained with less than 10 wt % rubber content.