摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 glee to 0.960 glee, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 glee to 0.960 Wee and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SET) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
摘要翻译:公开了一种双峰型齐格勒 - 纳塔催化聚乙烯,其密度为0.930gle-0.960glee,分子量分布为10-25,其中由其形成的制品具有至少为1500的PENT。还公开了一种方法 制备管状制品,包括获得密度为0.930glee至0.960ee的分子量分布为10至25的双峰聚乙烯,并且在比能量输入(SET)小于300kW的条件下处理聚乙烯 h / ton,并且其中制品具有至少1500的PENT。还公开了一种控制聚乙烯降解的方法,包括聚合乙烯单体,回收聚乙烯,挤出聚乙烯,并通过测量SEI来控制聚乙烯的降解 到挤出机并调节产量和/或齿轮吸入压力使SEI小于300kW.h / ton,并形成物品。
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Blown films and processes of forming the same are described herein. The blown films generally include high density polyethylene exhibiting a molecular weight distribution of from about 1.5 to about 8.0 and a density of from 0.94 g/cc to less than 0.96 g/cc.
摘要:
Methods of forming polyolefins and catalysts are described herein. Such methods generally include forming Ziegler-Natta catalyst compounds in the absence of one or more blended compounds typically used to form such catalyst.
摘要:
Methods of forming polyolefins and catalysts are described herein. Such methods generally include forming Ziegler-Natta catalyst compounds in the absence of one or more blended compounds typically used to form such catalyst.
摘要:
Polymerization processes and polymers formed therefrom are described herein. The polymerization processes generally include contacting ethylene and propylene with a multi-component catalyst composition including a first catalyst component including a chromium oxide based catalyst and a second catalyst component selected from metallocene and Ziegler-Natta catalysts within a polymerization reaction vessel to form a random copolymer, wherein the second catalyst component exhibits a higher comonomer response than the first catalyst component.
摘要:
A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.