Abstract:
A cover material used for a container has a seal part formed from a polypropylene resin. The cover material includes a base material and a sealant layer. The sealant layer has a laminated structure obtained through lamination of a first thermoplastic resin layer, adhesive to the base material, and a second thermoplastic resin layer, adhesive to the seal part formed from the polypropylene resin. Thicknesses of the first thermoplastic resin layer and the second thermoplastic resin layer satisfy: thickness of first thermoplastic resin layer≦thickness of second thermoplastic resin layer. The layer of the second thermoplastic resin has a dispersion structure obtained by dispersing, in the first thermoplastic resin, the second thermoplastic resin that is non-compatible or partially compatible to the first thermoplastic resin such that a ratio l/s of a domain longer diameter l and a domain shorter diameter s of the second thermoplastic resin is within 1.5≦l/s≦10.
Abstract:
A cover material used for a container has a seal part formed from a polypropylene resin. The cover material includes a base material and a sealant layer. The sealant layer has a laminated structure obtained through lamination of a first thermoplastic resin layer, adhesive to the base material, and a second thermoplastic resin layer, adhesive to the seal part formed from the polypropylene resin. Thicknesses of the first thermoplastic resin layer and the second thermoplastic resin layer satisfy: thickness of first thermoplastic resin layer≦thickness of second thermoplastic resin layer. The layer of the second thermoplastic resin has a dispersion structure obtained by dispersing, in the first thermoplastic resin, the second thermoplastic resin that is non-compatible or partially compatible to the first thermoplastic resin such that a ratio l/s of a domain longer diameter l and a domain shorter diameter s of the second thermoplastic resin is within 1.5≦l/s≦10.
Abstract:
A cover material used for a container has a seal part covered with a polyethylene resin. The cover material includes a base material and a sealant layer. The sealant layer has a laminated structure obtained through lamination of a first thermoplastic resin layer, adhesive to the base material, and a second thermoplastic resin layer, adhesive to the seal part covered with the polyethylene resin. Thicknesses of the first thermoplastic resin layer and the second thermoplastic resin layer satisfy: thickness of first thermoplastic resin layer≦thickness of second thermoplastic resin layer. The layer of the second thermoplastic resin has a dispersion structure obtained by dispersing, in the first thermoplastic resin, the second thermoplastic resin that is non- compatible or partially compatible to the first thermoplastic resin such that a ratio Us of a domain longer diameter 1 and a domain shorter diameter s of the second thermoplastic resin is within 1.5≦l/s≦10.
Abstract:
An odor adsorbent material, an odor detection kit, and a method for using the same for rapidly identifying a facility where binding of an odor component had occurred among facilities used in a distribution route of a commodity. The odor detection kit includes at least two pieces of an odor adsorbent material, a package section that includes at least two storage sections and is configured to store the odor adsorbent material, and a sheet section. The odor detection kit is installed in a facility. At least one of the pieces of the odor adsorbent material is exposed to open space in the facility, recovered therefrom, and sealed and stored. At the time of testing, occurrence of odor emission in the facility is determined by comparing odor components adsorbed by each of the pieces of the odor adsorbent material.
Abstract:
A sealant film including a polyolefin layer containing polyolefin as a main ingredient, and a polycycloolefin layer as an outermost layer containing polycycloolefin as a main ingredient. The polycycloolefin contains two or more kinds of structural units selected from a structural unit (A) derived from a dicyclopentadiene compound, a structural unit (B) derived from a tetracyclododecene compound, and a structural unit (C) derived from a norbornene compound, and the polycycloolefin has a glass transition temperature less than or equal to 80° C.
Abstract:
An odor adsorbent material, an odor detection kit, and a method for using the same for rapidly identifying a facility where binding of an odor component had occurred among facilities used in a distribution route of a commodity. The odor detection kit includes at least two pieces of an odor adsorbent material, a package section that includes at least two storage sections and is configured to store the odor adsorbent material, and a sheet section. The odor detection kit is installed in a facility. At least one of the pieces of the odor adsorbent material is exposed to open space in the facility, recovered therefrom, and sealed and stored. At the time of testing, occurrence of odor emission in the facility is determined by comparing odor components adsorbed by each of the pieces of the odor adsorbent material.