Abstract:
A three phase alternating current generator-motor that serves as a starter motor or the alternator includes switching elements for controlling current. When the three phase alternating current generator-motor generates electricity, current flowing to the switching elements is suppressed by current control units in accordance with quantity of generated electricity. A plurality of rectifying diodes are provided in the three-phase alternating current generator-motor are connected in parallel with the corresponding switching elements.
Abstract:
In a non-insulated DC-DC converter for performing direct-current power conversion by operating a first MOS transistor and a second MOS transistor in mutually inverted phases, the second MOS transistor is held off during soft-start control. In soft-start control, the on-duty period of the first MOS transistor is short immediately after the switch-on of a power source, and is gradually extended afterwards.
Abstract:
A valve-driving system which is applied to an internal combustion engine having a plurality of cylinders for driving an intake or exhaust valve provided in each cylinder, including a plurality of valve-driving apparatuses provided for driving valves of different cylinders of the internal combustion engine, wherein each valve-driving apparatus includes an electrical motor as a driving source for generating rotation motion; and a power transmission mechanism for converting the rotation motion of the electric motor into opening and closing motion of the valve to be driven and for transmitting the opening and closing motion to the valve through a cam or a link.
Abstract:
A stop control apparatus for an internal combustion engine is provided with a valve mechanism capable of operating at least one of an intake valve and an exhaust valve independently a crankshaft of an internal combustion engine, and a valve controlling device for controlling an operation of the valve mechanism so that the internal combustion engine is stopped in a predetermined state.
Abstract:
A voltage conversion apparatus is connected between a first charging/discharging device and a second charging/discharging device, and performs voltage conversion between the first and second charging/discharging devices. The apparatus includes a first switching device having one terminal connected to the first charging/discharging device, a second switching device connected between the other terminal of the first switching device and the earth, a third switching device having one terminal connected to the second charging/discharging device, a fourth switching device connected between the other terminal of the third switching device and the earth, and a coil provided between the other terminal of the first switching device and the other terminal of the third switching device. A controller is provided for controlling the first through fourth switching devices, such that the first and fourth switching devices are switched on and off in the same phase, and the second and third switching devices are switched on and off in the same phase that is reverse to that of switching of the first and fourth switching devices.
Abstract:
A stop and start control apparatus of an internal combustion engine prevents fuel supplied in a specific cylinder at the time of stopping the engine from being discharged in an unburned state. When an ignition switch is turned off in a state that the unburned fuel is sealed in the combustion chamber of a specific cylinder during idling stop, the unburned fuel is combusted to prevent the unburned fuel from being discharged. The vibration occurring at that time can be suppressed by rotating the motor generator in the counter direction to the rotation direction of the crankshaft. After the unburned fuel is sealed in the combustion chamber of the specific cylinder, if it is estimated that the unburned fuel is discharged, the exhaust valve corresponding to the specific cylinder is closed at the predetermined timing, or the unburned fuel is combusted, whereby the unburned fuel is prevented from being discharged. Thus, deterioration of emission can be avoided.
Abstract:
A stop position control apparatus of an internal combustion engine is applied to a vehicle of a type in which a function of a motor or a generator is connected to a crankshaft of the engine, such as an economic-running vehicle and a hybrid vehicle, for example. A rotation position of a motor generator is detected by a motor angle sensor or the like, and a crank angle of the engine is detected by a crank angle sensor or the like. A stop position of the internal combustion engine i.e., a crank angle, at the time of stop page is estimated based on the rotation position of the motor generator and the crank angle. By utilizing both the detection results, the stop position of the internal combustion engine can be accurately estimated. By detecting a rotation direction of the crankshaft from the output of the motor angle sensor, the stop position of the engine can be accurately estimated even when the engine is rotated in the reverse direction at the time of the engine stopping.
Abstract:
When a crank angle is controlled to stop at an optimal crank angle stop position by an engine automatic stop control, such as idling stop, or when the crank angle stop position can be estimated with high accuracy, the automatic engine restart is performed by a motor generator serving as an electric motor or an electric generator, at the next time of restarting of the engine. On the other hand, when the crank angle is not controlled to stop at the optimal crank angle stop position, when the crank angle stop position cannot be estimated with the high accuracy, or when the crank angle stop position changes after the stop control, the engine is restarted by a DC starter having an output torque larger than that of a motor generator, at the next time of restarting of the engine.
Abstract:
A valve-driving system, which is applied to an internal combustion engine having a plurality of cylinders, for driving an intake or exhaust valve provided in each cylinder, comprising: a plurality of valve-driving apparatuses, each of which is provided for at least each one of the intake valve and the exhaust valve, each valve-driving apparatus having an electrical motor as a driving source for generating rotation motion and a power transmission mechanism provided with a transmitting section for transmitting the rotation motion generated by the electrical motor and a converting section for converting the rotation motion transmitted from the transmitting section into opening and closing motion of the valve to be driven; and a motor control device which controls operations of electric motors of the respective valve-driving apparatuses in accordance with the operation state of the internal combustion engine.
Abstract:
In a starting control system for an internal combustion engine, an output shaft is rotated in a reverse direction at a predetermined direction upon start of the internal combustion engine, and then is rotated in a normal direction so as to start a cranking operation. The system serves to combust the fuel in a cylinder in an expansion stroke when the output shaft is rotated in the reverse direction, and the resultant combustion pressure is used for performing the cranking operation. This makes it possible to reduce the load exerted to the electric motor.