Abstract:
An exhaust emission control system of an internal combustion engine may include a filter, a temperature raising device, a differential pressure detecting device, and an electronic control unit. The filter may include a first region as a part of the filter, and a second region as another part of the filter. The electronic control unit may be configured to calculate a first deposition amount such that a calculated deposition amount is larger as a proportion of a magnitude of the first differential pressure reduction amount to the length of the first oxidation period is larger. The electronic control unit may be configured to calculate an amount of the particulate matter deposited in the second region based on a length of the second oxidation period and a second differential pressure reduction amount.
Abstract:
A controller is applied to an internal combustion engine in which an electrically heated catalyst that is heated when supplied with electric power is installed in an exhaust passage. The controller is configured to perform a preheating process of warming up a first exhaust catalyst by supplying electric power to the electrically heated catalyst through control over a power supply before a start of the internal combustion engine. The controller is configured to, when an insulation resistance of the electrically heated catalyst at a start of the preheating process is lower than a threshold, perform the preheating process while decreasing a voltage supplied to the electrically heated catalyst.
Abstract:
An exhaust gas control system for an internal combustion engine, before execution of a filter regeneration process, executes a pre-regeneration process that is a process of raising a temperature of a filter to a second target temperature lower than a first target temperature and increasing the concentration of NO2 contained in exhaust gas flowing into the filter for a predetermined period. The first target temperature during execution of the filter regeneration process in the case where a speed of change in a detected value of a differential pressure sensor during execution of the pre-regeneration process is high is set so as to be lower than the first target temperature in the case where the speed of change is low.
Abstract:
An electrically heating catalytic converter according to the present invention includes: a honeycomb structure 1 having an outer peripheral wall and partition walls defining a plurality of cells; a pair of metal electrodes 2 connected to the honeycomb structure 1; and a housing 3 provided with an inlet 30 and an outlet 31, the housing 3 storing the honeycomb structure 1 therein, wherein the honeycomb structure 1 has a plurality of regions comprising a central region including an axial center of the honeycomb structure and an outer peripheral region adjacent to the outer peripheral wall, wherein the opening percentage of the central region is less than or equal to 0.9 times that of the outer peripheral region, and wherein a diameter of the central region is more than or equal to 65% and less than or equal to 135% of that of the inlet of the housing.
Abstract:
A control device is applied to an internal combustion engine equipped with an electric heating catalyst system provided with an EHC. The control device executes a preheating process to warm up an exhaust gas reduction catalyst prior to a start of the internal combustion engine by supplying electric power to the EHC, when the control device determines that a temperature of the exhaust gas reduction catalyst is lower than an activation temperature. The control device executes a determination process for determining whether water is adhered to a catalyst carrier. The control device starts the internal combustion engine without executing the preheating process when the control device determines by the determination process that water is adhered to the catalyst carrier, even when the control device determines that the temperature of the exhaust gas reduction catalyst is lower than the activation temperature.
Abstract:
The disclosure is intended to oxidize PM deposited in a filter in a suitable manner. Provision is made for a filter of wall flow type, a temperature raising unit to raise the temperature of the filter from a downstream side thereof, an exhaust gas shut-off valve, and a controller. The controller controls a flow of exhaust gas in the filter by once fully closing the exhaust gas shut-off valve and then fully opening it when the flow rate of the exhaust gas is equal to or larger than a predetermined flow rate, so as to cause PM to move to a downstream side portion in the filter in the direction of flow of exhaust gas, and carries out regeneration processing which oxidizes the PM by using the temperature raising unit after the controller has caused the PM to move to the downstream side portion of the filter.
Abstract:
An exhaust gas purification apparatus for an internal combustion engine, capable of carrying out oxidation removal of PM deposited in a filter as a whole in an efficient manner, includes a filter arranged in an exhaust passage of the internal combustion engine and having an oxidation catalyst supported in at least an upstream side portion thereof, and a heating device arranged so as to be able to heat the upstream side portion of the filter irrespective of oxidation reaction heat of the oxidation catalyst, wherein when filter upstream regeneration processing to oxidize and remove deposition PM in the upstream side portion of the filter is carried out by controlling a heating device, an amount of decrease of the upstream side deposition PM by the filter upstream regeneration processing is reflected on an amount of filter PM deposition in the ordinary filter regeneration processing which oxidizes and removes the deposition PM in the entire filter by means of oxidation reaction heat of unburnt fuel generated by the oxidation catalyst supported in the filter, and the filter upstream regeneration processing is ended, even if the thus reflected amount of filter PM deposition is in a state of being larger than a reference amount of deposition which is a threshold value for ending the ordinary filter regeneration processing.
Abstract:
A control device starts supply of electric power to a catalyst device when a state of charge of a main battery decreases to a value which is equal to or less than an optimal power-supply state of charge set based on a travel load while a vehicle is traveling in an EV travel mode. The control device corrects input electric power of the catalyst device to a value less than the value at the time of starting of supply of electric power when the travel load decreases after the supply of electric power has been started.
Abstract:
An exhaust gas control system for an internal combustion engine, before execution of a filter regeneration process, executes a pre-regeneration process that is a process of raising a temperature of a filter to a second target temperature lower than a first target temperature and increasing the concentration of NO2 contained in exhaust gas flowing into the filter for a predetermined period. An execution time of the filter regeneration process when a physical quantity that correlates with a speed of change in a detected value of a differential pressure sensor during execution of the pre-regeneration process is large is shorter than an execution time of the filter regeneration process when the physical quantity is small.
Abstract:
An internal combustion engine includes a control unit determining the occurrence or non-occurrence of dew condensation in a tip portion of a nozzle based on a nozzle heat receiving amount of an injector and a nozzle tip temperature of the injector at a point in time when ignition is turned OFF and performing nozzle corrosion prevention control when the dew condensation is determined to occur in the nozzle tip portion. The control unit calculates a nozzle tip temperature reduction rate based on the nozzle heat receiving amount, calculates a dew point arrival time based on the reduction rate, and determines the occurrence or non-occurrence of the dew condensation in the nozzle tip portion based on the dew point arrival time.