摘要:
A porous catalyst layer containing mixed conducting oxide having substantially a perovskite structure and containing a first element selected from Co and Fe, and a second element selected from In, Sn and Y arranged in the B site in the perovskite structure is contiguous to a second surface (1a) of a selective oxygen-permeable dense continuous layer (1) containing mixed conducting oxide. A porous intermediate catalyst layer (3) containing mixed conducting oxide and at least one of Co, Fe, Mn and Pd is contiguous to a first layer (1b) of the dense continuous layer (1). A porous reactive catalyst layer (4) provided with a metal catalyst selected from at least one of Ni, Co, Ru, Rh, Pt, Pd, Ir and Re and a support is continguous to the porous intermediate catalyst layer (3) in a manner to sandwich between the dense continuous layer (1) and the porous reactive catalyst layer (4).
摘要:
A sealing technique is established in which a seal can be easily formed and which is excellent in reliability and a heat cycle property in a high temperature region of 800° C. or higher, so as to provide a composite body preferably used for a device for producing pure oxygen, oxygen-rich air, and the like, a membrane reactor represented by that for partial oxidation of a hydrocarbon gas, a solid oxide fuel cell, an oxygen purification device, a heat exchanger, or the like. The present invention makes it possible to increase a possibility of practical use in a wide area which has been delayed in development owing to a bottleneck of improvement in a sealing property. Particularly, its application to the device for producing pure oxygen, oxygen-rich air, or the like, the membrane reactor represented by that for partial oxidation of the hydrocarbon gas, the solid oxide fuel cell, the oxygen purification device, the heat exchanger, or the like can greatly contribute to acceleration of the development.
摘要:
A ceramic composite with a mixed conducting oxide that has perovskite type crystal structure of {Ln1−aAa}{BxB′yB″z}O(3−δ) where a, x, y, and z are within the range of 0.8≦a≦1, 0
摘要翻译:具有{Ln1-aAa} {BxB'yB''z} O(3-delta)的钙钛矿型晶体结构的混合导电氧化物的陶瓷复合体,其中a,x,y和z在0.8 < = a <= 1,0,0
摘要:
A process for production of Si, characterized by adding an oxide, hydroxide, carbonate or fluoride of an alkali metal element, or an oxide, hydroxide, carbonate or fluoride of an alkaline earth metal element, or two or more of such compounds, to solid SiO in a total molar amount of from 1/20 to 1000 times with respect to the moles of solid SiO, heating the mixture at between the melting point of Si and 2000° C. to induce a chemical reaction which produces Si and separating and recovering the Si from the reaction by-product, for the purpose of inexpensively and efficiently producing Si from various forms of solid SiO with no industrial value produced from Si production steps and the like.
摘要:
Provided are a method for manufacturing a highly pure silicon by unidirectional solidification of molten silicon, that can inexpensively and industrially easily manufacture highly pure silicon that has a low oxygen concentration and low carbon concentration and is suitable for applications such as manufacturing solar cells; highly pure silicon obtained by this method and silicon raw material for manufacturing highly pure silicon. A method for manufacturing highly pure silicon using molten silicon containing 100 to 1000 ppmw of carbon and 0.5 to 2000 ppmw of germanium as the raw material when manufacturing highly pure silicon by unidirectionally solidifying molten silicon raw material in a casting container, the highly pure silicon obtained by this method, and the silicon raw material for manufacturing the highly pure silicon.
摘要:
In this method for refining silicon by vacuum melting, the falling of impurity condensate from an impurity trap located above a crucible and contamination of the molten silicon are prevented. A crucible for housing molten silicon, and a heating means for heating the crucible are located inside a treatment chamber equipped with a vacuum pump; further provided are: an impurity trap having an impurity condensation unit for cooling and condensing the vapor of impurities evaporating from the liquid surface of the molten silicon; and a contamination prevention device for preventing contamination of the molten silicon, having an impurity catch unit for catching impurities when impurities trapped by the impurity trap fall.
摘要:
An objective of the present invention is, in refining a metal or a semiconductor melt, without impairing refining efficiency, to alleviate wear and tear commensurate with unevenness in a crucible caused by instability in melt flow, and to allow safe operation over long periods of time such that leakages from the crucible do not occur. Provided is a metal or semiconductor melt refining method, in which, by using an AC resistance heating heater as a crucible heating method, the melt is heat retained and mixed by a rotating magnetic field which is generated by the resistance heating heater. The metal or semiconductor melt refinement method and a vacuum refinement device which is optimal for the refinement method are characterized in that, in order that a fluid instability does not occur in the boundary between the melt and the bottom face of the crucible when the melt is rotated by the rotating magnetic field, with a kinematic viscosity coefficient of the melt designated ν (m2/sec), the radius of the fluid surface of the melt designated R (m), and the rotational angular velocity of the melt designated Ω (rad/sec), the operation is carried out such that the value of a Reynolds number (Re) which is defined as Re=R×(Ω/ν)̂(1/2) does not exceed 600.
摘要:
Provided are a silicon purification apparatus that uses a ring-shaped thermal-insulating lid, which can be replaced while heating a crucible, as a thermal-insulating means for keeping the surface of a silicon melt at a high temperature, and has a simple structure and is easy to produce, said silicon purification apparatus being capable of continuously processing several tens of portions of charged silicon with the crucible heated as is; a silicon purification method that makes use of the silicon purification apparatus; and a purification method. The present invention pertains to a silicon purification apparatus, which is provided with, inside a depressurization chamber equipped with a vacuum pump, a graphite crucible having an opening at the upper end and accommodating silicon therein, and a heating device for heating said crucible, said silicon purification apparatus being characterized by being provided with a ring-shaped thermal-insulating lid that covers the opening of the crucible at the top of the crucible and has an exhaust opening with an area smaller than the surface of the silicon melt inside the crucible, said thermal-insulating lid being capable of being replaced during heating of the crucible in the decompression chamber. The present invention further pertains to a silicon purification method that makes use of the silicon purification apparatus.
摘要:
Provided is a silicon refining device that is used when industrially producing silicon of high purity by vacuum melting, has a high P removal rate and thus high productivity, and is a practical device cost-wise with a simple and cheap device configuration. This silicon refining device comprises, in a decompression vessel provided with a vacuum pump, a crucible that contains a metal silicon material, a heating device that heats the crucible, and a molten metal surface thermal insulation member that covers the upper portion of silicon molten metal and has an exhaust opening with an opening area that is smaller than the silicon molten metal surface area. The molten metal surface thermal insulation member comprises a laminated insulation material with a multilayer structure in which three or more laminates are laminated at predetermined intervals from each other, and which exhibits a radiant heat insulating function based on the multilayer structure.
摘要:
Provided is a silicon refining device that is used when industrially producing silicon of high purity by vacuum melting, has a high P removal rate and thus high productivity, and is a practical device cost-wise with a simple and cheap device configuration. This silicon refining device comprises, in a decompression vessel provided with a vacuum pump, a crucible that contains a metal silicon material, a heating device that heats the crucible, and a molten metal surface thermal insulation member that covers the upper portion of silicon molten metal and has an exhaust opening with an opening area that is smaller than the silicon molten metal surface area. The molten metal surface thermal insulation member comprises a laminated insulation material with a multilayer structure in which three or more laminates are laminated at predetermined intervals from each other, and which exhibits a radiant heat insulating function based on the multilayer structure.