RF switch device with a sidewall spacer having a low dielectric constant

    公开(公告)号:US11296209B2

    公开(公告)日:2022-04-05

    申请号:US16815131

    申请日:2020-03-11

    Inventor: Cheng-Ta Wu

    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated circuit (IC). The method includes forming a gate electrode and a gate dielectric stacked over a substrate. A sidewall spacer layer is deposited over the substrate and the gate electrode, in which the sidewall spacer layer lines sidewalls of the gate electrode. An etching back is performed on the sidewall spacer layer to form a sidewall spacer on the sidewalls of the gate electrode. The etching back is performed at an etch rate less than about 8 angstroms/minute using an etchant comprising hydrogen fluoride. Further, the substrate is doped with the sidewall spacer and the gate electrode in place to form a pair of source/drain regions respectively on opposite sides of the gate electrode.

    METHOD OF FORMING SEMICONDUCTOR-ON-INSULATOR (SOI) SUBSTRATE

    公开(公告)号:US20210098281A1

    公开(公告)日:2021-04-01

    申请号:US16812533

    申请日:2020-03-09

    Abstract: The present disclosure, in some embodiments, relates to a method of forming a semiconductor structure. The method includes forming a plurality of bulk micro defects within a handle substrate. Sizes of the plurality of bulk micro defects are increased to form a plurality of bulk macro defects (BMDs) within the handle substrate. Some of the plurality of BMDs are removed from within a first denuded region and a second denuded region arranged along opposing surfaces of the handle substrate. An insulating layer is formed onto the handle substrate. A device layer comprising a semiconductor material is formed onto the insulating layer. The first denuded region and the second denuded region vertically surround a central region of the handle substrate that has a higher concentration of the plurality of BMDs than both the first denuded region and the second denuded region.

    SEMICONDUCTOR-ON-INSULATOR (SOI) SUBSTRATE COMPRISING A TRAP-RICH LAYER WITH SMALL GRAIN SIZES

    公开(公告)号:US20200006385A1

    公开(公告)日:2020-01-02

    申请号:US16024962

    申请日:2018-07-02

    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate comprising a trap-rich layer with small grain sizes, as well as the resulting SOI substrate. In some embodiments, an amorphous silicon layer is deposited on a high-resistivity substrate. A rapid thermal anneal (RTA) is performed to crystallize the amorphous silicon layer into a trap-rich layer of polysilicon in which a majority of grains are equiaxed. An insulating layer is formed over the trap-rich layer. A device layer is formed over the insulating layer and comprises a semiconductor material. Equiaxed grains are smaller than other grains (e.g., columnar grains). Since a majority of grains in the trap-rich layer are equiaxed, the trap-rich layer has a high grain boundary area and a high density of carrier traps. The high density of carrier traps may, for example, reduce the effects of parasitic surface conduction (PSC).

    Method for forming deep trench structure

    公开(公告)号:US10163647B2

    公开(公告)日:2018-12-25

    申请号:US15416733

    申请日:2017-01-26

    Abstract: A method for forming a deep trench structure is provided. The method includes forming a first recess in a top portion of a substrate and forming a first protective layer on sidewalls of the first recess. The method includes etching a middle portion of the substrate by using the first protective layer as a mask to form a second recess and forming a second protective layer on sidewalls of the second recess. The method also includes etching a bottom portion of the substrate by using the second protective layer as a mask to form a third recess; and removing the first protective layer and the second protective layer to form a deep trench structure. The deep trench structure is constructed by the first recess, the second recess and the third recess, and the deep trench structure has a stair shape.

    Selective polysilicon growth for deep trench polysilicon isolation structure

    公开(公告)号:US11594597B2

    公开(公告)日:2023-02-28

    申请号:US16663659

    申请日:2019-10-25

    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a semiconductor device, a polysilicon isolation structure, and a first and second insulator liner. The semiconductor device is disposed on a frontside of a substrate. The polysilicon isolation structure continuously surrounds the semiconductor device and extends from the frontside of the substrate towards a backside of the substrate. The first insulator liner and second insulator liner respectively surround a first outermost sidewall and a second outermost sidewall of the polysilicon isolation structure. The substrate includes a monocrystalline facet arranged between the first and second insulator liners. A top of the monocrystalline facet is above bottommost surfaces of the polysilicon isolation structure, the first insulator liner, and the second insulator liner.

    Method for forming a semiconductor-on-insulator (SOI) substrate

    公开(公告)号:US11495489B2

    公开(公告)日:2022-11-08

    申请号:US16732696

    申请日:2020-01-02

    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.

Patent Agency Ranking