Abstract:
Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
Abstract:
The present disclosure relates to an image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within an image sensing die and respectively comprises a photodiode configured to convert radiation into an electrical signal. The photodiode comprises a photodiode doping column with a first doping type surrounded by a photodiode doping layer with a second doping type that is different than the first doping type. A BDTI structure is disposed between adjacent pixel regions and extending from the back-side of the image sensor die to a position within the photodiode doping layer. The BDTI structure comprises a doped liner with the second doping type and a dielectric fill layer. The doped liner lines a sidewall surface of the dielectric fill layer.
Abstract:
A semiconductor device includes a semiconductor substrate and a trench isolation. The trench isolation is located in the semiconductor substrate, and includes a bottom portion and a top portion. The bottom portion has a lining oxide layer, a negatively-charged liner and a first silicon oxide. The lining oxide layer is peripherally enclosed by the semiconductor substrate, the negatively-charged liner is peripherally enclosed by the lining oxide layer, and the first silicon oxide is peripherally enclosed by the negatively-charged liner. The top portion adjoins the bottom portion, and has a second silicon oxide peripherally enclosed by and contacting the semiconductor substrate.
Abstract:
The present disclosure relates to an image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within an image sensing die and respectively comprises a photodiode configured to convert radiation into an electrical signal. The photodiode comprises a photodiode doping column with a first doping type surrounded by a photodiode doping layer with a second doping type that is different than the first doping type. A BDTI structure is disposed between adjacent pixel regions and extending from the back-side of the image sensor die to a position within the photodiode doping layer. The BDTI structure comprises a doped liner with the second doping type and a dielectric fill layer. The doped liner lines a sidewall surface of the dielectric fill layer.
Abstract:
Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
Abstract:
A semiconductor device includes a semiconductor substrate and a trench isolation. The trench isolation is located in the semiconductor substrate, and includes a bottom portion and a top portion. The bottom portion has a lining oxide layer, a negatively-charged liner and a first silicon oxide. The lining oxide layer is peripherally enclosed by the semiconductor substrate, the negatively-charged liner is peripherally enclosed by the lining oxide layer, and the first silicon oxide is peripherally enclosed by the negatively-charged liner. The top portion adjoins the bottom portion, and has a second silicon oxide peripherally enclosed by and contacting the semiconductor substrate.
Abstract:
A vertical-gate transfer transistor of an active pixel sensor (APS) is provided. The transistor includes a semiconductor substrate, a vertical trench extending into the semiconductor substrate, a dielectric lining the vertical trench, and a vertical gate filling the lined vertical trench. The dielectric includes a dielectric constant exceeding 3.9 (i.e., the dielectric constant of silicon dioxide). A method of manufacturing the vertical-gate transfer transistor, an APS including the vertical-gate transfer transistor, a method of manufacturing the APS, and an image sensor including a plurality of the APSs are also provided.
Abstract:
A vertical-gate transfer transistor of an active pixel sensor (APS) is provided. The transistor includes a semiconductor substrate, a vertical trench extending into the semiconductor substrate, a dielectric lining the vertical trench, and a vertical gate filling the lined vertical trench. The dielectric includes a dielectric constant exceeding 3.9 (i.e., the dielectric constant of silicon dioxide). A method of manufacturing the vertical-gate transfer transistor, an APS including the vertical-gate transfer transistor, a method of manufacturing the APS, and an image sensor including a plurality of the APSs are also provided.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a supporting substrate. The semiconductor device structure also includes a first carrier-trapping layer covering the supporting substrate. The first carrier-trapping layer is doped with a group-IV dopant. The semiconductor device structure further includes an insulating layer covering the first carrier-trapping layer. In addition, the semiconductor device structure includes a semiconductor substrate over the insulating layer. The semiconductor device structure also includes a transistor. The transistor includes a gate stack over the semiconductor substrate and source and drain structures in the semiconductor substrate.
Abstract:
Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.