FIELD EFFECT TRANSISTOR WITH MERGED EPITAXY BACKSIDE CUT AND METHOD

    公开(公告)号:US20220336613A1

    公开(公告)日:2022-10-20

    申请号:US17564125

    申请日:2021-12-28

    Abstract: A device includes a substrate, a first semiconductor channel over the substrate, and a second semiconductor channel over the substrate and laterally separated from the first semiconductor channel. A gate structure covers and wraps around the first semiconductor channel and the second semiconductor channel. A first source/drain region abuts the first semiconductor channel on a first side of the gate structure, and a second source/drain region abuts the second semiconductor channel on the first side of the gate structure. An isolation structure is under and between the first source/drain region and the second source/drain region, and includes a first isolation region in contact with bottom surfaces of the first and second source/drain regions, and a second isolation region in contact with sidewalls of the first and second source/drain regions, and extending from a bottom surface of the first isolation region to upper surfaces of the first and second source/drain regions.

    AIR-REPLACED SPACER FOR SELF-ALIGNED CONTACT SCHEME

    公开(公告)号:US20220181202A1

    公开(公告)日:2022-06-09

    申请号:US17682234

    申请日:2022-02-28

    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a dummy gate structure over a substrate, forming a first spacer on a sidewall of the dummy gate structure and a second spacer on the first spacer, forming a source/drain structure on the substrate, removing the second spacer, forming a dielectric structure over the source/drain structure, replacing the dummy gate structure with a metal gate structure and a capping structure on the metal gate structure, and forming an opening in the dielectric structure. The opening exposes the source/drain structure. The method further includes forming a dummy spacer on a sidewall of the opening, forming a contact structure in the opening, and removing the dummy spacer to form an air gap between the contact structure and the metal gate structure. The contact structure is in contact with the source/drain structure in the opening.

    SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20210126135A1

    公开(公告)日:2021-04-29

    申请号:US16667615

    申请日:2019-10-29

    Abstract: A semiconductor device includes a substrate, a plurality of nanowires, a gate structure, a source/drain epitaxy structure, and a semiconductor layer. The substrate has a protrusion portion. The nanowires extend in a first direction above the protrusion portion of the substrate, the nanowires being arranged in a second direction substantially perpendicular to the first direction. The gate structure wraps around each of the nanowires. The source/drain epitaxy structure is in contact with an end surface of each of the nanowires, in which a bottom surface of the source/drain epitaxy structure is lower than a top surface of the protrusion portion of the substrate. The semiconductor layer is in contact with the bottom surface of the epitaxy structure, in which the semiconductor layer is spaced from the protrusion portion of the substrate.

    AIR-REPLACED SPACER FOR SELF-ALIGNED CONTACT SCHEME

    公开(公告)号:US20210125858A1

    公开(公告)日:2021-04-29

    申请号:US16823943

    申请日:2020-03-19

    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a dummy gate structure over a substrate, forming a first spacer on a sidewall of the dummy gate structure and a second spacer on the first spacer, forming a source/drain structure on the substrate, removing the second spacer, forming a dielectric structure over the source/drain structure, replacing the dummy gate structure with a metal gate structure and a capping structure on the metal gate structure, and forming an opening in the dielectric structure. The opening exposes the source/drain structure. The method further includes forming a dummy spacer on a sidewall of the opening, forming a contact structure in the opening, and removing the dummy spacer to form an air gap between the contact structure and the metal gate structure. The contact structure is in contact with the source/drain structure in the opening.

    FIELD EFFECT TRANSISTOR WITH MERGED EPITAXY BACKSIDE CUT AND METHOD

    公开(公告)号:US20240379803A1

    公开(公告)日:2024-11-14

    申请号:US18784535

    申请日:2024-07-25

    Abstract: A device includes a substrate, a first semiconductor channel over the substrate, and a second semiconductor channel over the substrate and laterally separated from the first semiconductor channel. A gate structure covers and wraps around the first semiconductor channel and the second semiconductor channel. A first source/drain region abuts the first semiconductor channel on a first side of the gate structure, and a second source/drain region abuts the second semiconductor channel on the first side of the gate structure. An isolation structure is under and between the first source/drain region and the second source/drain region, and includes a first isolation region in contact with bottom surfaces of the first and second source/drain regions, and a second isolation region in contact with sidewalls of the first and second source/drain regions, and extending from a bottom surface of the first isolation region to upper surfaces of the first and second source/drain regions.

    SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20230030571A1

    公开(公告)日:2023-02-02

    申请号:US17962327

    申请日:2022-10-07

    Abstract: A method includes forming a plurality of first semiconductor layers and a plurality of second semiconductor layers in an alternate manner over a substrate; patterning the first and second semiconductor layers and the substrate to form a fin structure, in which the fin structure includes a base portion protruding from the substrate and remaining portions of the first and second semiconductor layers; etching the fin structure to form a first recess extending through the remaining portions of the first and second semiconductor layers and into the base portion; epitaxially growing a first epitaxy layer in the first recess; epitaxially growing a second epitaxy layer over the first epitaxy layer; oxidizing the first epitaxy layer, wherein the second epitaxy layer remains unoxidized after the first epitaxy layer is oxidized; and after oxidizing the first epitaxy layer, forming a source/drain epitaxy structure on the second epitaxy layer.

Patent Agency Ranking