Abstract:
In some embodiments, the present disclosure relates to an integrated chip that includes a conductive structure arranged within a substrate or a first dielectric layer. A first barrier layer is arranged on outermost sidewalls and a bottom surface of the conductive structure. A second barrier layer is arranged on outer surfaces of the first barrier layer. The second barrier layer separates the first barrier layer from the substrate or the first dielectric layer. A second dielectric layer is arranged over the substrate or the first dielectric layer. A via structure extends through the second dielectric layer, is arranged directly over topmost surfaces of the first and second barrier layers, and is electrically coupled to the conductive structure through the first and second barrier layers.
Abstract:
In some embodiments, the present disclosure relates to an integrated chip that includes a conductive structure arranged within a substrate or a first dielectric layer. A first barrier layer is arranged on outermost sidewalls and a bottom surface of the conductive structure. A second barrier layer is arranged on outer surfaces of the first barrier layer. The second barrier layer separates the first barrier layer from the substrate or the first dielectric layer. A second dielectric layer is arranged over the substrate or the first dielectric layer. A via structure extends through the second dielectric layer, is arranged directly over topmost surfaces of the first and second barrier layers, and is electrically coupled to the conductive structure through the first and second barrier layers.
Abstract:
In some embodiments, the present disclosure relates to a display device that includes a reflector electrode coupled to an interconnect structure. An isolation structure is disposed over the reflector electrode, and a transparent electrode is disposed over the isolation structure. Further, an optical emitter structure is disposed over the transparent electrode. A via structure extends from a top surface of the isolation structure to the reflector electrode and comprises an outer portion that directly overlies the top surface of the isolation structure. A hard mask layer is arranged directly between the top surface of the isolation structure and the outer portion of the via structure.
Abstract:
Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
Abstract:
Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
Abstract:
A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate including a first source/drain region and a second source/drain region. The first and second source/drain regions form a channel region therebetween. The semiconductor structure further includes a select gate and a memory gate spaced between the first and second source/drain regions over the channel region. The select gate extends over the channel region and terminates at a line end having a top surface asymmetric about an axis that extends along a length of the select gate and that bisects a width of the select gate. Even more, the semiconductor structure includes a charge trapping dielectric arranged between neighboring sidewalls of the memory gate and the select gate, and arranged under the memory gate. A method of manufacturing the semiconductor structure is also provided.
Abstract:
Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip comprising a display pixel in which a bottom electrode and a reflector are separate and border. A light emission device overlies the reflector, and a top electrode overlies the light emission device. A coupling structure extends from the bottom electrode, alongside the reflector, to an interface between the light emission device and the reflector to electrically couple the bottom electrode to the light emission device.
Abstract:
Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.
Abstract:
In some methods, a first recess is etched in a selected region of a substrate. A first polymer liner is formed on sidewalls and a bottom surface of the first recess. A portion of the first polymer liner is removed from the bottom surface, and a remaining portion of the first polymer liner is left along the sidewalls. The first recess is deepened to establish a second recess while the remaining portion of the first polymer liner is left along the sidewalls. A first oxide liner is formed along the sidewalls and along sidewalls and a bottom surface of the second recess. A portion of the first oxide liner is removed from a bottom surface of the second recess, while a remaining portion of the first oxide liner is left on the sidewalls of the first recess and the sidewalls of the second recess.
Abstract:
Various embodiments of the present application are directed to a method for forming an embedded memory boundary structure with a boundary sidewall spacer. In some embodiments, an isolation structure is formed in a semiconductor substrate to separate a memory region from a logic region. A multilayer film is formed covering the semiconductor substrate. A memory structure is formed on the memory region from the multilayer film. An etch is performed into the multilayer film to remove the multilayer film from the logic region, such that the multilayer film at least partially defines a dummy sidewall on the isolation structure. A spacer layer is formed covering the memory structure, the isolation structure, and the logic region, and further lining the dummy sidewall. An etch is performed into the spacer layer to form a spacer on dummy sidewall from the spacer layer. A logic device structure is formed on the logic region.