摘要:
A tread rubber is made of a rubber composition containing 100 pbw of a diene rubber, 30 to 100 pbw of a reinforcing filler including at least 10 pbw of silica, and 1 to 20 pbw of microcapsules each encapsulating a heat-expandable substance. A sulfur-containing silane coupling agent is mixed in the rubber composition in an amount of 3 to 15 wt. % based on the weight of the silica. A shell material of each microcapsule is made of a thermoplastic resin which essentially contains a nitrile monomer. A vapor pressure of the heat-expandable substance is 1.4 to 3.0 MPa at 150° C. An average diameter of the microcapsules is 20 to 30 μm before vulcanization of the rubber composition. An average diameter of the microcapsules expanded due to the vulcanization is 40 to 80 μm. The tread rubber has a proportion of a cell-occupying area of 5 to 30%.
摘要:
Provided is a pneumatic tire whose frictional force on ice is improved by satisfactorily forming resin-encapsulated cells from heat-expandable microcapsules, even when a tread rubber contains silica. The tire is characterized in that: the tread rubber is made of a rubber composition containing 100 parts by weight of a diene rubber, 30 to 100 parts by weight of a reinforcing filler including at least 10 parts by weight of silica, and 1 to 20 parts by weight of microcapsules each encapsulating a heat-expandable substance; a sulfur-containing silane coupling agent is mixed in the rubber composition in an amount of 3 to 15 wt. % based on the weight of the silica; a shell material of each microcapsule is made of a thermoplastic resin which essentially contains a nitrile monomer (I); a vapor pressure of the heat-expandable substance is set at 1.4 to 3.0 MPa at 150° C.; an average particle diameter of the microcapsules is set at 20 to 30 μm before vulcanization of the rubber composition; an average particle diameter of the microcapsules expanded due to the vulcanization is set at 40 to 80 μm; and thus, a proportion of an area occupied by the cells in the tread rubber is set at 5 to 30%.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and core material encapsulated in the shell. The core material include a blowing agent having a boiling point not higher than the softening point of the thermoplastic resin and a gas migration inhibitor having a boiling point higher than the softening point of the thermoplastic resin. The ratio of the gas migration inhibitor to the core material is at least 1 weight percent and below 30 weight percent. The average particle size of the heat-expandable microspheres ranges from 1 to 100 micrometers.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
摘要:
A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
摘要:
The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
摘要:
A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes, a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microsphres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
摘要:
Heat-expanded microspheres having high packing efficiency are produced by expanding heat-expandable microspheres, which include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and core material encapsulated in the shell. The core material include a blowing agent having a boiling point not higher than the softening point of the thermoplastic resin and a gas migration inhibitor having a boiling point higher than the softening point of the thermoplastic resin. The ratio of the gas migration inhibitor to the core material is at least 1 weight percent and below 30 weight percent. The average particle size of the heat-expandable microspheres ranges from 1 to 100 micrometers.