摘要:
A electrically-conductive barium sulfate filler and a method for preparing same are herein disclosed and it comprises a particulate core material composed of barium sulfate provided thereon with a coating film of tin dioxide which may be optionally doped with niobium or tentalum, the bare core material free of coating film having a specific surface area ranging from 0.1 to 150 m.sup.2 /g and the film having a thickness ranging from 2 to 80 nm.
摘要:
A electrically-conductive barium sulfate filler and a method for preparing same are herein disclosed and it comprises a particulate core material composed of barium sulfate provided thereon with a coating film of tin dioxide which may be optionally doped with niobium or tentalum, the bare core material free of coating film having a specific surface area ranging from 0.1 to 150 m.sup.2 /g and the film having a thickness ranging from 2 to 80 nm.
摘要:
A fibrous electrically-conductive filler herein provided comprises fibrous aluminum borate as a core material provided thereon with, in order, an optional titanium oxide intermediate layer and an antimony-free tin oxide layer. The fibrous electrically-conductive filler can be prepared by a method which comprises the steps of optionally forming an intermediate layer of titanium oxide by depositing titanium oxide hydrate on the surface of the core material and then calcining the titanium oxide hydrate layer; then forming a coating layer of tin oxide hydrate on the surface of the titanium oxide-coated fibrous aluminum borate or the fibrous aluminum borate as a core material and then calcining the coating layer at a temperature ranging from 150.degree. to 600.degree. C. in an inert gas atmosphere or a reducing atmosphere to form an antimony-free tin oxide layer. The fibrous electrically-conductive filler is excellent in whiteness, non-toxic and cheap, has electrical conductivity stable to temperature and humidity changes, has a low volume resistivity, is excellent in a electrical conductivity-imparting effect per unit weight and can accordingly be incorporated into various basic materials such as paper, plastics, rubbers, resins, fibers and paints and varnishes for imparting electrical conductivity to these substances.
摘要:
A fibrous electrically-conductive filler herein provided comprises fibrous aluminum borate as a core material provided thereon with, in order, an optional titanium oxide intermediate layer and an antimony-free tin oxide layer. The fibrous electrically-conductive filler can be prepared by a method which comprises the steps of optionally forming an intermediate layer of titanium oxide by depositing titanium oxide hydrate on the surface of the core material and then calcining the titanium oxide hydrate layer; then forming a coating layer of tin oxide hydrate on the surface of the titanium oxide-coated fibrous aluminum borate or the fibrous aluminum borate as a core material and then calcining the coating layer at a temperature ranging from 150.degree. to 600.degree. C. in an inert gas atmosphere or a reducing atmosphere to form an antimony-free tin oxide layer. The fibrous electrically-conductive filler is excellent in whiteness, non-toxic and cheap, has electrical conductivity stable to temperature and humidity changes, has a low volume resistivity, is excellent in a electrical conductivity-imparting effect per unit weight and can accordingly be incorporated into various basic materials such as paper, plastics, rubbers, resins, fibers and paints and varnishes for imparting electrical conductivity to these substances.
摘要:
Needle-like electrically conductive zinc oxide filler having low specific volume resistance and excellent electrical conductivity-imparting effect per unit weight thereof is provided, including a method for its preparation.
摘要:
The electrically conductive, barium sulfate-containing composition consists of BaSO.sub.4 particles having a surface area of from 0.1 to 150 m.sup.2 /g. The BaSO.sub.4 particles each are provided with a SnO.sub.2 coating having a thickness of 2 to 80 nm and containing from 1 to 15% by weight of the Sb.sub.2 O.sub.3. The electrically conductive, barium sulfate-containing composition is made by a method including the steps of adding a first acidic solution containing 1 to 95% by weight SnCl.sub.4 and a basic solution to an aqueous dispersion from 50 to 800 g/l of BaSO.sub.4 to make a basic mixture having a pH from 9 to 15; then adding an acid to the basic mixture to form an acidic mixture having a pH from 4 to 1; then adding a second acid solution containing 0.5 to 60% by weight of SbCl.sub.3 to the acidic mixture; separating the electrically conductive, barium sulfate-containing composition from the acidic mixture; and drying and igniting the separated electrically conductive, barium sulfate-containing composition at 300 to 800.degree. C.
摘要:
A method is provided for the high yield production of white, electrically conductive zinc oxide which comprises the simultaneous addition to a reactor of (1) an aqueous solution containing a water-soluble zinc compound and at least one water-soluble compound of a metal selected from the group consisting of tin, aluminum, gallium and indium, and (2) an aqueous alkaline solution, while maintaining the resulting neutralization reaction solution at a pH from 6 to 12.5 to obtain coprecipitates, and then calcining the coprecipitates in a reducing atmosphere to obtain said conductive zinc oxide.
摘要:
A fibrous electrically-conductive filler comprises fibrous aluminum borate as a core material and a layer of a electrically-conductive substance which covers the core material or comprises fibrous aluminum borate as a core material, a layer of titanium oxide which covers the fibrous aluminum borate and a layer of a electrically-conductive substance which covers the titanium oxide layer. The fibrous electrically-conductive filler can be prepared by a process comprising the step of directly forming a layer of a electrically-conductive substance doped with antimony or fluorine on the surface of fibrous aluminum borate, or the steps of forming, on the surface of the fibrous aluminum borate, an intermediate layer of titanium oxide in an amount ranging from 2 to 50% by weight on the basis of the weight of the fibrous aluminum borate and then forming a layer of a electrically-conductive substance doped with antimony or fluorine on the surface of fibrous aluminum borate. The filler has a low volume specific resistivity and is substantially excellent in electrical conductivity-imparting effect per unit weight thereof when it is added to a basic material such as a resin. The electrically-conductive substance coated on the filler surface is not peeled off and hence the filler does not cause loss of the electrical conductivity when it is incorporated into a basic material such as paper, a plastic, a rubber, a resin or a paint. The filler per se is white or transparent and, therefore, the color tone of such a basic material may be arbitrarily changed by the addition of a coloring agent.
摘要:
The composite oxide comprises, by weight, 100 parts of zinc oxide and at least one member, incorporated therein, selected from seven specific oxides in their specific amounts such as 0.001 to 5.0 parts of lanthanum oxide, 1.0 to 10.0 parts of cobalt oxide, 1.0 to 30.0 parts of titanium oxide, the composite oxide being surface treated with a silicone oil or a fatty acid to provide a surface-treated composite oxide of the present invention which has excellent ultraviolet screening capability and high visible light transmittance, these superior properties being well balanced with each other, and can maintain said superior properties over a long period of time. In one embodiment, there is provided a process for producing the ultraviolet screening surface-treated composite oxide.
摘要:
A process for preparing a conductive, acicular zinc oxide, comprising the steps of: preparing a zinc oxide slurry comprising an acicular zinc oxide, a salt of at least one metal selected from the group consisting of aluminum, gallium, indium and tin and an aqueous solution of an alkali metal hydroxide and having a pH value maintained at 10 to 13, adjusting the pH value of said zinc oxide slurry to 5 to 9 while stirring, aging the slurry, separating the zinc oxide present in the slurry by filtration, washing and drying the separated zinc oxide, and then firing the dried zinc oxide at 500.degree. to 700.degree. C. in a reducing atmosphere.