摘要:
A sun light electricity generator comprising an amorphous sun light battery, which comprises: a conductive substrate which also constitutes an output electrode; amorphous semiconductor layers provided on the substrate, said layers constituting a p-i-n junction structure for a sun battery element and for a protection diode; an electrode for the sun battery element and an electrode for the protection diode, both provided on the light incident amorphous layer but separated from each other; and an electrode for connection to another generator provided on a region of the substrate where the amorphous layers are not provided.
摘要:
A process for fabricating an electron emitting vacuum type device having a tipped electron emitter supported on a substrate and disposed in a vacuum for emitting electrons. The process utilizes a substrate having opposed substantially planar front and rear surfaces. The front surface, carrying a series of conical depressions, is plated with a metallic layer of electron emitting material which lines the apertures to form metallic structures having tips buried in the substrate. A first material removal process, comprising grinding, is performed on the rear of the substrate to remove the bulk of the substrate but leaving the tips protected within the substrate. A second operation comprising a finishing operation is then applied to the rear surface to advance the plane of the rear surface from an as-ground to an as-finished position. The finishing operation employs a wet etching solution, and may employ mechanical friction (free of abrasive particles) to assist the speed of etching and uniformity of the finished surface. The as-finished plane of the surface serves to expose the metallic tips so that they can serve as emitters in a vacuum tube device.
摘要:
A semiconductor device includes a heat generating element disposed on a front surface of a semiconductor substrate and a cavity disposed within the semiconductor substrate opposite the heat generating element. In this structure, heat generated by the heat generating element is conducted through the substrate to the cavity, whereby the thermal conductivity of the device is improved. In a method for producing the semiconductor device, portions of the substrate at opposite sides of the heat generating element are selectively etched in a direction perpendicular to the front surface to form first holes (first etching process). Thereafter, the substrate is selectively etched from the front surface to form second holes beneath the respective first holes (second etching process). During the second etching process, the second holes are connected to each other, resulting in the cavity for heat radiation.
摘要:
A method of fabricating a semiconductor device includes preparing a semiconductor substrate having a surface and a mechanical strength; adhering a reinforcing plate to the surface of the semiconductor substrate with an adhesive to increase the mechanical strength of the semiconductor substrate and processing the semiconductor substrate; and immersing the semiconductor substrate with the reinforcing plate in a heated solvent to melt and dissolve the adhesive, thereby separating the semiconductor substrate from the reinforcing plate. An apparatus for performing the methods includes a holder for holding the semiconductor substrate with the reinforcing plate; a container for accommodating the holder and for containing a solvent that dissolves the adhesive and a heater for heating the solvent. When the adhesive between the semiconductor substrate and the reinforcing plate is sufficiently dissolved by the solvent, the semiconductor substrate is separated from the reinforcing plate. Therefore, no force is applied to the semiconductor substrate in the direction perpendicular to the surface of the semiconductor substrate, so that unwanted damage of the semiconductor substrate, such as cracking, is avoided.
摘要:
A semiconductor device includes a heat generating element disposed on a front surface of a semiconductor substrate and a cavity disposed within the semiconductor substrate opposite the heat generating element. In this structure, heat generated by the heat generating element is conducted through the substrate to the cavity, whereby the thermal conductivity of the device is improved. In a method for producing the semiconductor device, portions of the substrate at opposite sides of the heat generating element are selectively etched in a direction perpendicular to the front surface to form first holes (first etching process). Thereafter, the substrate is selectively etched from the front surface to form second holes beneath the respective first holes (second etching process). During the second etching process, the second holes are connected to each other, resulting in the cavity for heat radiation.