摘要:
An object of the present invention is to provide a high-efficiency red light emitting phosphor and white light emitting phosphor for using in a display or lighting which high-efficiently emits light in combination with a light source which emits light in the region from near-ultraviolet light to visible light. The present invention relates to a phosphor having a crystal phase having a specified chemical composition.
摘要:
An object of the present invention is to provide a high-efficiency red light emitting phosphor and white light emitting phosphor for using in a display or lighting which high-efficiently emits light in combination with a light source which emits light in the region from near-ultraviolet light to visible light. The present invention relates to a phosphor having a crystal phase having a specified chemical composition.
摘要:
To provide a green phosphor with high conversion efficiency of blue of near-ultraviolet light and excellent color purity, a multinary oxynitride phosphor represented by the general formula [I] is proposed. M1xBayM2zLuOvNw [I] In the formula [I], M1 represents Cr, Mn, Fe, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb, M2 represents Sr, Ca, Mg and Zn, L represents metal elements belonging to the fourth group or the fourteenth group of the periodic table, and x, y, z, u, v and w are the numeric values in the following ranges: 0.00001≦x≦3 0≦y≦2.99999 2.6≦x+y+z≦3 0
摘要翻译:为了提供具有高的近紫外光蓝的转换效率和优异的色纯度的绿色荧光体,提出了由通式[I]表示的多氮氧化物荧光体。 M1xBayM2zLuOvNw [I]在式[I]中,M1表示Cr,Mn,Fe,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm和Yb,M2表示Sr,Ca,Mg和Zn ,L表示属于周期表第四组或第十四组的金属元素,x,y,z,u,v和w是以下范围内的数值:0.00001≦̸ x≦̸ 3 0≦̸ y≦̸ 2.99999 2.6≦̸ x + y + z≦̸ 3 0
摘要:
To provide a green phosphor with high conversion efficiency of blue of near-ultraviolet light and excellent color purity, a multinary oxynitride phosphor represented by the general formula [I] is proposed. M1xBayM2zLuOvNw [I] In the formula [I], M1 represents Cr, Mn, Fe, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb, M2 represents Sr, Ca, Mg and Zn, L represents metal elements belonging to the fourth group or the fourteenth group of the periodic table, and x, y, z, u, v and w are the numeric values in the following ranges: 0.00001≦x≦3 0≦y≦2.99999 2.6≦x+y+z≦3 0
摘要:
To provide a green phosphor with high conversion efficiency of blue of near-ultraviolet light and excellent color purity, a multinary oxynitride phosphor represented by the general formula [I] is proposed. M1xBayM2zLuOvNw [I] In the formula [I], M1 represents Cr, Mn, Fe, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb, M2 represents Sr, Ca, Mg and Zn, L represents metal elements belonging to the fourth group or the fourteenth group of the periodic table, and x, y, z, u, v and w are the numeric values in the following ranges: 0.00001≦x≦3 0≦y≦2.99999 2.6≦x+y+z≦3 0
摘要:
The present invention provides an alloy powder that is a material for producing inorganic functional materials such as phosphors, a phosphor with high brightness, and a method for producing the phosphor. An alloy powder for an inorganic functional material precursor contains at least one metal element and at least one activating element M1 and has a weight-average median diameter D50 of 5 μm to 40 μm. A method for producing a phosphor includes a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere.
摘要:
The present invention relates to a phosphor comprising a nitride or an oxynitride, comprising an X-ray powder diffraction pattern comprising at least one Region having at least one peak with an intensity ratio I of 8% or less, the X-ray powder diffraction pattern measured in the 2θ range from 10° to 60° using a CuKα line (1.54184 {acute over (Å)}), wherein the Region is the 2θ range from 41.5° to 47°, the intensity of each peak is a value obtained after background correction, and the intensity ratio I is defined by the formula (Ip×100)/Imax (%), where Imax represents the height of the most intense peak present in the 2θ range from 34° to 37° and Ip represents the height of each peak.
摘要:
The present invention relates to a phosphor comprising a nitride or an oxynitride, comprising an X-ray powder diffraction pattern comprising at least one Region having at least one peak with an intensity ratio I of 8% or less, the X-ray powder diffraction pattern measured in the 2θ range from 10° to 60° using a CuKα line (1.54184 {acute over (Å)}), wherein the Region is the 2θ range from 41.5° to 47°, the intensity of each peak is a value obtained after background correction, and the intensity ratio I is defined by the formula (Ip×100)/Imax (%), where Imax represents the height of the most intense peak present in the 2θ range from 34° to 37° and Ip represents the height of each peak.
摘要:
The present invention provides an alloy powder that is a material for producing inorganic functional materials such as phosphors, a phosphor with high brightness, and a method for producing the phosphor. An alloy powder for an inorganic functional material precursor contains at least one metal element and at least one activating element M1 and has a weight-average median diameter D50 of 5 μm to 40 μm. A method for producing a phosphor includes a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere.
摘要:
An object of the present invention is to provide a light emitting device having a high emission intensity, and a light emitting device having a high emission intensity and a good color rendering property. The present invention provides a light emitting device which comprises: a first light emitter emitting light of from 350 to 415 nm and a second light emitter emitting visible light by exposure to the light from the first light emitter, wherein said second light emitter comprises a phosphor capable of satisfying any one of the following conditions (i) to (iv): (i) the phosphor comprises: (a) a crystal phase whose Eu concentration providing the maximum emission intensity at any one of excitation wavelengths of from 350 to 415 nm is higher than that providing the maximum emission intensity at an excitation wavelength of 254 nm; and (b) a crystal phase which is activated by Eu having at least 1.1 times the concentration providing the maximum emission intensity at an excitation wavelength of 254 nm and 0.5 to 9 times the concentration providing the maximum emission intensity at an excitation frequency of 400 nm: (ii) the phosphor comprises a crystal phase having an Eu—Eu mean distance, as calculated from the Eu concentration in a crystal matrix, of 4 Å or greater but not greater than 11 Å: (iii) the phosphor has a quantum absorption efficiency αq of 0.8 or greater: (iv) the phosphor has a product αq·ηi of a quantum absorption efficiency αq and an internal quantum efficiency ηi of 0.55 or greater.