摘要:
An active light ray sensitive or radioactive ray sensitive resin composition which satisfies high sensitivity, high resolution, good pattern configuration, and good line edge roughness at the same time to a great extent, while having sufficiently good outgassing performance during exposure, and an active light ray sensitive or radioactive ray sensitive film formed by using the composition, and a pattern-forming method, are provided.The active light ray sensitive or radioactive ray sensitive resin composition according to the present invention includes a resin (P) containing a repeating unit (A) which decomposes by irradiation with active light ray or radioactive ray to generate an acid, and a repeating unit (C) containing a primary or secondary hydroxyl group.
摘要:
According to one embodiment, an actinic-ray- or radiation-sensitive resin composition includes an arylsulfonium salt that when exposed to actinic rays or radiation, generates an acid, the arylsulfonium salt containing at least one aryl ring on which there are a total of one or more electron donating groups, the acid generated upon exposure to actinic rays or radiation having a volume of 240 Å3 or greater.
摘要:
An embodiment of the composition contains any of compounds of the formula A-LG in which A represents any of residues of general formula (A-1) below and LG represents any of groups that are cleaved to generate acids of the formula A-H when acted on by an acid. The composition further contains at least one of a compound that generates an acid when exposed to actinic rays or radiation and a compound that generates an acid when heated.
摘要:
According to one embodiment, an actinic-ray- or radiation-sensitive resin composition includes an arylsulfonium salt that when exposed to actinic rays or radiation, generates an acid, the arylsulfonium salt containing at least one aryl ring on which there are a total of one or more electron donating groups, the acid generated upon exposure to actinic rays or radiation having a volume of 240 Å3 or greater.
摘要:
An embodiment of the composition contains any of compounds of the formula A-LG in which A represents any of residues of general formula (A-1) below and LG represents any of groups that are cleaved to generate acids of the formula A-H when acted on by an acid. The composition further contains at least one of a compound that generates an acid when exposed to actinic rays or radiation and a compound that generates an acid when heated.
摘要:
An actinic ray-sensitive or radiation-sensitive composition, including: (1) a low molecular compound having a molecular weight of 500 to 5,000 and containing (G) an acid-decomposable group; and (2) a compound capable of generating an acid of 305 Å3 or more in volume upon irradiation with an actinic ray or radiation, an actinic ray-sensitive or radiation-sensitive composition, including: a solvent; and (1A) a compound which is a low molecular compound having a molecular weight of 500 to 5,000 and containing (Z) one or more groups capable of decomposing upon irradiation with an actinic ray or radiation to produce an acid, (G) one or more acid-decomposable groups and (S) one or more dissolution auxiliary groups, wherein assuming that the number of the functional groups in one molecule of (Z), (G) and (S) is z, q and s, respectively, q/z≧2 and s/z≧2, and a pattern forming method using the composition are provided.
摘要:
According to one embodiment, an actinic-ray- or radiation-sensitive resin composition includes a compound that when exposed to actinic rays or radiation, generates any of acids of general formula (I) below, in which W1 represents an optionally substituted alkylene group, W2 represents a bivalent connecting group, W3 represents an optionally substituted organic group having 15 or more carbon atoms, and Z represents a hydroxyl group or a fluoroalkylsulfonamido group having at least one fluorine atom introduced therein as a substituent.
摘要:
According to an embodiment, a computer program product includes a computer-readable medium including program, when executed by a computer, to have a plurality of modules run by the computer. The computer includes a memory having a shared area, which is an area accessible to only those modules which run cooperatively and storing therein execution module identifiers. Each of the modules includes a first operation configured to store, just prior to a switchover of operations to an other module that runs cooperatively, an identifier of the other module as the execution module identifier in the shared area; and a second operation configured to execute, when the execution module identifier stored in the shared area matches with an identifier of own module immediately after a switchover of operations from the other module, a function inside the own module.
摘要:
According to an embodiment, a memory management device increments a lower value of a first counter, updates the counter by incrementing an upper value and resetting the lower value when the lower value overflows, increments to update the lower counter value when the upper value is incremented as a result of writing a second data piece having the upper value in common to a memory, recalculates a first secret value calculated using the first counter values and a root secret value in response to the first counter update, writes a first data piece and the first secret value to the memory, and at reading of the first data piece and the first secret value, calculates a second secret value using the updated first counter values and the root secret value, and compares the first secret value with the second secret value to verify the first data piece.
摘要:
According to an embodiment, a first linear transformation unit performs a linear transformation from mask data to first mask data. A second linear transformation unit performs a linear transformation from mask data to second mask data. A first calculator calculates first data based upon data to be processed and the first mask data. A selecting unit selects the first data or the second mask data. A non-linear transformation unit performs a non-linear transformation on the selected first data or second mask data. A second calculator calculates second data based upon the first data after the non-linear transformation and the mask data. A third linear transformation unit performs a linear transformation on the second data. The second data after the linear transformation by the third linear transformation unit is retained as new data to be processed, and the second mask data after the non-linear transformation is retained as new mask data.