摘要:
This invention provides novel thermoelectric compounds comprising: a) atomic percent Ytterbium b) between 50 and 74.999 atomic percent Aluminum c) between 0.001 and 25 atomic percent Manganese and a process for their preparation.
摘要:
The present invention provides an indium-doped Co4Sb12 skutterudite composition in which some Co on the cubic lattice structure may be replaced with one or more members of the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt; some Sb on the planar rings may be replaced by one or more members of the group consisting of Si, Ga, Ge and Sn; and a second dopant atom is selected from a member of the group consisting of Ca, Sc, Zn, Sr, Y, Pd, Ag, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The composition is useful as a thermoelectric material. In preferred embodiments, the composition has a figure of merit greater than 1.0. The present invention also provides a process for the production of the composition, and thermoelectric devices using the composition.
摘要:
The invention relates to a corrosion resistant reactor tube, method for providing a passivating or corrosion resistant coating to the inside of the reactor tube, and a method of making high bismuth glass powders using the corrosion resistant reactor tube.
摘要:
Disclosed is a process for the manufacture of glass-crystalline particles comprising a glass component and a crystalline component comprising the steps of: a) providing a precursor solution comprising a solvent, a glass component composition, and a crystalline component composition; b) forming an aerosol comprising finely divided droplets of the precursor solution, wherein the droplet concentration which is below the concentration where collisions and subsequent coalescence of the droplets results in a 10% reduction in droplet concentration; c) heating the aerosol wherein, upon heating, glass-crystalline particles are formed, wherein the glass-crystalline particles comprise a glass component and a crystalline component, and wherein the crystalline component comprises one or more metal oxides; and d) isolating the glass-crystalline particles.
摘要:
The invention relates to a glass-crystalline particle including a glass component and a crystalline component, wherein the crystalline component includes one or more metal oxides, wherein the metal is selected from the group consisting of: Zn, Ca, Sr, Mg, Ba, and mixtures thereof.
摘要:
Disclosed is a plurality of glass-crystalline particles, wherein at least a portion of the glass-crystalline particles comprise a glass component and a crystalline component, and wherein the crystalline component comprises one or more metal oxides wherein the metal is selected from the group consisting of: Zn, Ca, Sr, Mg, Ba, and mixtures thereof.
摘要:
Disclosed is a plurality of glass-crystalline particles, wherein at least a portion of the glass-crystalline particles comprise a glass component and a crystalline component, and wherein the crystalline component comprises one or more metal oxides wherein the metal is selected from the group consisting of: Zn, Ca, Sr, Mg, Ba, and mixtures thereof.
摘要:
Disclosed is a process for the manufacture of glass-crystalline particles comprising a glass component and a crystalline component comprising the steps of: a) providing a precursor solution comprising a solvent, a glass component composition, and a crystalline component composition; b) forming an aerosol comprising finely divided droplets of the precursor solution, wherein the droplet concentration which is below the concentration where collisions and subsequent coalescence of the droplets results in a 10% reduction in droplet concentration; c) heating the aerosol wherein, upon heating, glass-crystalline particles are formed, wherein the glass-crystalline particles comprise a glass component and a crystalline component, and wherein the crystalline component comprises one or more metal oxides; and d) isolating the glass-crystalline particles.
摘要:
The invention relates to a corrosion resistant reactor tube, method for providing a passivating or corrosion resistant coating to the inside of the reactor tube, and a method of making high bismuth glass powders using the corrosion resistant reactor tube.