摘要:
A tri-axially orthogonal gas laser device in which an optical axis of an optical resonator, a direction in which a laser gas is supplied into the optical resonator, and a direction of discharge for exciting the laser gas are mutually orthogonal to one another, the device including: an exciting unit including a blower supplying the laser gas in −X direction to the optical axis of the optical resonator, and a discharge electrode pair which is shifted on a gas upstream side with respect to the optical axis; and an exciting unit including a blower for supplying the laser gas in +X direction to the optical axis of the optical resonator, and a discharge electrode pair which is shifted on a gas upstream side with respect to the optical axis
摘要:
A tri-axially orthogonal gas laser device in which an optical axis of an optical resonator, a direction in which a laser gas is supplied into the optical resonator, and a direction of discharge for exciting the laser gas are mutually orthogonal to one another, the device including: an exciting unit including a blower supplying the laser gas in −X direction to the optical axis of the optical resonator, and a discharge electrode pair which is shifted on a gas upstream side with respect to the optical axis; and an exciting unit including a blower for supplying the laser gas in +X direction to the optical axis of the optical resonator, and a discharge electrode pair which is shifted on a gas upstream side with respect to the optical axis
摘要:
A CO2 gas laser device according to the present invention amplifies CO2 laser light that oscillates repeatedly in short pulses having a pulse width of 100 ns or less, and cools a CO2 laser gas which is excited by continuous discharge by circulating the CO2 laser gas by means of forced convection. Therein, an angle θ defined by the optical axis of the amplified CO2 laser beam and the flow direction of the CO2 laser gas caused by the forced convection is determined by both a discharge cross sectional area and a discharge length of a volume in which the CO2 laser gas is excited by discharge, whereby increasing the gain of pulsed laser to achieve pulsed laser light having an extremely high average output power.
摘要:
A laser machining apparatus, including: a laser light source; a transparent member that is set on an optical path of a laser beam and transmits the laser beam; a contact type temperature difference sensor, set on a surface of the transparent member outside an irradiation range of the laser beam, for detecting a temperature difference between a surface of the transparent member, which is spaced apart from a center of the transparent member by a first distance, and another surface of the transparent member, which is spaced apart from the center of the transparent member by a second distance larger than the first distance; and a controller correcting a focal position based on the temperature difference detected by the contact type temperature difference sensor to stabilize a beam diameter of the laser beam condensed onto a machining object.
摘要:
A CO2 gas laser device according to the present invention amplifies CO2 laser light that oscillates repeatedly in short pulses having a pulse width of 100 ns or less, and cools a CO2 laser gas which is excited by continuous discharge by circulating the CO2 laser gas by means of forced convection. Therein, an angle θ defined by the optical axis of the amplified CO2 laser beam and the flow direction of the CO2 laser gas caused by the forced convection is determined by both a discharge cross sectional area and a discharge length of a volume in which the CO2 laser gas is excited by discharge, whereby increasing the gain of pulsed laser to achieve pulsed laser light having an extremely high average output power.
摘要:
A laser oscillator includes: a optical resonator having an orthogonal mirror and a partial reflection mirror; a laser gas acting as a laser medium; and a 90-degree folding mirror acting as a polarization selecting element. The orthogonal mirror has two reflecting surfaces orthogonal to each other. The 90-degree folding mirror is arranged such that the polarization direction of the laser oscillated light is parallel to the reference axis set in a plane perpendicular to an optical axis of the optical resonator. The orthogonal mirror is arranged such that the polarization direction of the laser oscillated light is parallel to the valley line of the orthogonal mirror. This configuration can compensate anisotropy of optical characteristics in a laser medium, and stably generate linearly polarized laser light having excellent isotropy in a simple manner.
摘要:
A laser machining apparatus, including: a laser light source; a transparent member that is set on an optical path of a laser beam and transmits the laser beam; a contact type temperature difference sensor, set on a surface of the transparent member outside an irradiation range of the laser beam, for detecting a temperature difference between a surface of the transparent member, which is spaced apart from a center of the transparent member by a first distance, and another surface of the transparent member, which is spaced apart from the center of the transparent member by a second distance larger than the first distance; and a controller correcting a focal position based on the temperature difference detected by the contact type temperature difference sensor to stabilize a beam diameter of the laser beam condensed onto a machining object.
摘要:
A laser oscillator includes: a optical resonator having an orthogonal mirror and a partial reflection mirror; a laser gas acting as a laser medium; and a 90-degree folding mirror acting as a polarization selecting element. The orthogonal mirror has two reflecting surfaces orthogonal to each other. The 90-degree folding mirror is arranged such that the polarization direction of the laser oscillated light is parallel to the reference axis set in a plane perpendicular to an optical axis of the optical resonator. The orthogonal mirror is arranged such that the polarization direction of the laser oscillated light is parallel to the valley line of the orthogonal mirror. This configuration can compensate anisotropy of optical characteristics in a laser medium, and stably generate linearly polarized laser light having excellent isotropy in a simple manner.
摘要:
An uneven-pattern reading apparatus includes a detecting prism having a detecting surface on which an uneven pattern is placed, an incident surface upon which an incident light beam for illuminating the uneven pattern is incident, and an emergent surface from which a light beam reflected from the uneven pattern on the detecting surface is emergent, angles between the respective detecting, incident, and emergent surfaces providing that the incident light beam is applied to the uneven pattern and the light reflected from the detecting surface is emergent from the emergent surface; an incident-light-beam converger for causing an incident light beam from a light source to be incident upon the incident surface after collimating or converging the incident light beam; an imaging device for detecting a reflected image emergent from the detecting prism; a converging optical system for collimating or converging the emergent light beam emergent from the emergent surface; and a processing device for identifying the uneven pattern on the basis of the image picked up by the imaging device, wherein an imaging surface of the imaging device is located closer to an emergent surface side than a focusing position of the converging optical system.
摘要:
A microwave discharge light source device in which one side of a discharge space in which a plasma emission takes place is defined by a transparent dielectric member. A transparent microwave reflecting member is disposed in a position such as to face the discharge space through the dielectric member. A microwave having an electric field component in the direction of thickness of the dielectric member is introduced into the dielectric member through the coupling at an end surface of the dielectric member so that a microwave electric field is formed in the discharge space, and so that the plasma emission medium emits light by electric discharge. The light thus emitted is extracted through the transparent microwave reflecting member.