摘要:
A semiconductor device fabrication method by which CMOS transistors with low-resistance metal gate electrodes each having a proper work function can be fabricated. A HfN layer in which nitrogen concentration in an nMOS transistor formation region differs from nitrogen concentration in a pMOS transistor formation region is formed. A MoN layer is formed over the HfN layer and heat treatment is performed. Nitrogen diffuses from the MoN layer into the HfN layer in which nitrogen concentration is low and a work function is set by the HfN layer according to nitrogen concentration which depends on the nitrogen content of the HfN layer before the heat treatment and the amount of nitrogen that diffuses into the HfN layer. On the other hand, nitrogen hardly diffuses from the MoN layer into the HfN layer which originally has a certain nitrogen content, and a work function is set by the HfN layer according to nitrogen concentration in the HfN layer before the heat treatment. By controlling the nitrogen content of each layer and the amount of nitrogen that diffuses, a low-resistance metal gate electrode having a predetermined work function can be formed in each of the nMOS transistor formation region and the pMOS transistor formation region.
摘要:
A high-performance CMOS field effect semiconductor device using metal gate electrodes. An n-type gate electrode and a p-type gate electrode are formed by using a same metal and differ in nitrogen concentration. As a result, a high-performance CMOS field effect semiconductor device having the n-type gate electrode and the p-type gate electrode between which a work function difference is a predetermined value can be realized. By forming a low-resistance layer on layers which are formed by using the same metal and which differ in nitrogen concentration, it is possible to reduce the resistance of the n-type gate electrode and the p-type gate electrode while controlling the work functions of the n-type gate electrode and the p-type gate electrode. Therefore, a higher-performance CMOS field effect semiconductor device can be realized.
摘要:
A method for manufacturing a P-type MOS transistor includes forming a gate insulating film on the substrate, forming a gate electrode from amorphous silicon containing no impurities on the gate insulating film, performing a heat treatment for controlling the film characteristics of the amorphous silicon, depositing a nickel (Ni) layer on the gate electrode, and forming nickel silicides from the gate electrode and the nickel (Ni).
摘要:
A method for manufacturing a P-type MOS transistor includes forming a gate insulating film on the substrate, forming a gate electrode from amorphous silicon containing no impurities on the gate insulating film, performing a heat treatment for controlling the film characteristics of the amorphous silicon, depositing a nickel (Ni) layer on the gate electrode, and forming nickel silicides from the gate electrode and the nickel (Ni).
摘要:
A method for fabricating an electron device on a substrate includes the steps of forming a dummy film over the substrate such that the dummy film covers a device region of the substrate and an outer region of the substrate outside the device region, forming a dummy pattern by patterning the dummy film such that the dummy pattern has a first height in the device region and a second height smaller than the first height in the outer region, forming another film over the substrate such that the film covers the dummy pattern in the device region and in the outer region with a shape conformal to a cross-sectional shape of the dummy pattern, and applying an anisotropic etching process acting generally perpendicularly to the substrate such that a surface of the substrate is exposed in the device region and in the outer region.
摘要:
An MIM device includes a lower electrode of a metal nitride film, a hysteresis film of an oxide film containing Nb formed on the lower electrode, and an upper electrode of a metal nitride film formed on the hysteresis film.
摘要:
A method for fabricating an electron device on a substrate includes the steps of forming a dummy film over the substrate such that the dummy film covers a device region of the substrate and an outer region of the substrate outside the device region, forming a dummy pattern by patterning the dummy film such that the dummy patter has a first height in the device region and a second height smaller than the first height in the outer region, forming another film over the substrate such that the film covers the dummy pattern in the device region and in the outer region with a shape conformal to a cross-sectional shape of the dummy pattern, and applying an anisotropic etching process acting generally perpendicularly to the substrate such that a surface of the substrate is exposed in the device region and in the outer region.
摘要:
This invention aims at providing an optical waveguide device capable of stably operating for an extended period of time. The optical waveguide device comprises an optical waveguide path formed inside a surface of an electro-optical substrate, a buffer layer formed on the optical waveguide path, and a driving electrode for impressing an electric field so as to change a refractive index of the optical waveguide path, wherein the buffer layer is made of a transparent dielectric or insulator of a mixture between silicon dioxide and an oxide of at least one element selected from the group consisting of the metal elements of the Groups III to VIII, Ib and IIb of the Periodic Table and semiconductor elements other than silicon, or a transparent dielectric or insulator of an oxide between silicon and at least one of the metal elements and semiconductor elements described above.
摘要:
This invention aims at providing an optical waveguide device capable of stably operating for an extended period of time. The optical waveguide device comprises an optical waveguide path formed inside a surface of an electro-optical substrate, a buffer layer formed on the optical waveguide path, and a driving electrode for impressing an electric field so as to change a refractive index of the optical waveguide path, wherein the buffer layer is made of a transparent dielectric or insulator of a mixture between silicon dioxide and an oxide of at least one element selected from the group consisting of the metal elements of the Groups III to VIII, Ib and IIb of the Periodic Table and semiconductor elements other than silicon, or a transparent dielectric or insulator of an oxide between silicon and at least one of the metal elements and semiconductor elements described above.