Abstract:
An apparatus can be provided according to certain exemplary embodiments. For example, the apparatus can include a waveguiding first arrangement providing at least one electromagnetic radiation. A configuration can be provided that receives and splits the at least one electromagnetic radiation into a first radiation and a second radiation. The apparatus can further include a waveguiding second arrangement which has a first waveguide and a second waveguide, whereas the first waveguide receives the first radiation, and the second waveguide receives the second radiation. The first arrangement, the second arrangement and the configuration can be housed in a probe.
Abstract:
A spectrally encoded endoscopic probe. The probe has a light guiding component, a light focusing component, and a grating component. The probe is configured such that a set of light beams of multiple wavelengths are diffracted by the grating component in different orders at substantially the same angle. The set of light beams includes at least 3 light beams. Each light beam among the set of light beams is associated with a different wavelength.
Abstract:
A spectrally encoded endoscopic probe. The probe has a light guiding component, a light focusing component, and a grating component. The probe is configured such that a set of light beams of multiple wavelengths are diffracted by the grating component in different orders at substantially the same angle. The set of light beams includes at least 3 light beams. Each light beam among the set of light beams is associated with a different wavelength.
Abstract:
A method for generating a B-mode image of a sample, including: obtaining a plurality of M-mode frames from the sample using a probe; combining the plurality of M-mode frames into a montage, the montage comprising a plurality of A-lines corresponding to the respective plurality of M-mode frames; comparing adjacent A-lines of the montage to identify at least one pair of correlated A-lines; and removing one of the at least one pair of correlated A-lines from the montage to generate a B-mode image.
Abstract:
A spectrally encoded endoscopic probe. The probe has a light guiding component, a light focusing component, and a grating component. The probe is configured such that a set of light beams of multiple wavelengths are diffracted by the grating component in different orders at substantially the same angle. The set of light beams includes at least 3 light beams. Each light beam among the set of light beams is associated with a different wavelength.
Abstract:
An apparatus can be provided according to certain exemplary embodiments. For example, the apparatus can include a waveguiding first arrangement providing at least one electromagnetic radiation. A configuration can be provided that receives and splits the at least one electromagnetic radiation into a first radiation and a second radiation. The apparatus can further include a waveguiding second arrangement which has a first waveguide and a second waveguide, whereas the first waveguide receives the first radiation, and the second waveguide receives the second radiation. The first arrangement, the second arrangement and the configuration can be housed in a probe.
Abstract:
A system for determining intestinal potential difference. The system includes a measurement probe including a measurement tube having a measurement lumen which houses a measurement electrode therein, a measurement fluid delivery system in fluid communication with the measurement lumen, the measurement fluid delivery system being configured to deliver an electrically-conductive fluid into the measurement lumen such that the electrically-conductive fluid is electrically coupled to the measurement electrode, and the measurement lumen including an outlet at a distal end thereof through which the electrically-conductive fluid exits the measurement lumen and contacts an intestinal tissue of a subject to provide electrical coupling between the measurement electrode and the intestinal tissue; a controller coupled to the measurement electrode configured to measure a potential difference between tire measurement electrode and a reference electrode electrically coupled to the subject.
Abstract:
A computer-implemented method for diagnosing a medical condition of a patient is provided. The method can include causing, using one or more processors, an excitation source to emit an excitation light towards a region of interest of an artery, receiving, using the one or more processors and a detector, imaging data of the region of interest of the artery, generating, using the one or more processors and the imaging data, an image of the region of interest, determining, using the one or more processors, a risk region of an atheromatous plaque, based on the imaging data, and determining, using the one or more processors, that the patient has a severe case of an atheromatous plaque, based on the determined risk region of the atheromatous plaque.
Abstract:
An apparatus can be provided according to certain exemplary embodiments. For example, the apparatus can include a waveguiding first arrangement providing at least one electromagnetic radiation. A configuration can be provided that receives and splits the at least one electromagnetic radiation into a first radiation and a second radiation. The apparatus can further include a waveguiding second arrangement which has a first waveguide and a second waveguide, whereas the first waveguide receives the first radiation, and the second waveguide receives the second radiation. The first arrangement, the second arrangement and the configuration can be housed in a probe.
Abstract:
An apparatus can be provided according to certain exemplary embodiments. For example, the apparatus can include a waveguiding first arrangement providing at least one electromagnetic radiation. A configuration can be provided that receives and splits the at least one electromagnetic radiation into a first radiation and a second radiation. The apparatus can further include a waveguiding second arrangement which has a first waveguide and a second waveguide, whereas the first waveguide receives the first radiation, and the second waveguide receives the second radiation. The first arrangement, the second arrangement and the configuration can be housed in a probe.