摘要:
The present invention relates to a process for coating a polymer nonwoven comprising the steps of: plasma and/or corona assisted treatment of the surface of the nonwoven to obtain a charged and/or polar surface; and formation of a first coating layer comprising at least one first charged and/or polar species, the first species being a hydrophilic polymer, wherein the overall charge or partial charge facing the nonwoven surface of the first species carries the opposite sign from the average charge introduced to the nonwoven fiber surface in step a).
摘要:
A biocompatible material, wherein at least a part of a surface of the biocompatible material is characterized by a micro or nano-meter scale topographical structure comprising a plurality of features where the structure is selected to promote a predetermined cell function in vivo or ex vivo in cell or tissue culture.
摘要:
A biocompatible material, wherein at least a part of a surface of the biocompatible material is characterized by a micro or nano-meter scale topographical structure comprising a plurality of features where the structure is selected to promote the growth of undifferentiated pluripotent stem cells or serve to promote the uniform differentiated growth of stem cells. Furthermore, a biocompatible material is provided having a surface structure and composition that affects a cellular function, in particular cellular functions related to gene induction, cell differentiation and the formation of bone tissue in vivo and ex-vivo.
摘要:
A method of making a three-dimensional biocompatible scaffold capable of supporting cell activities such as growth and differentiation, the method includes providing a supporting grid that forms an open network and provides mechanical support of a second biocompatible material. The second biocompatible material has interconnected cavities that allow nutrients, metabolites and soluble factors to diffuse throughout the scaffold. The scaffold design can be understood as a hierarchically organised structure. At the micron to submicron length scale a top/down manufacturing approach is used to make a structure that will constitute the frame into which a bottom/up processing approach is applied to form an open porous scaffold with specific nano sized features. The advantage of this hierarchically organised design is that benefits can be drawn independently from both the micron and the nano sized structures, promoting specific cell activities and providing sufficient mechanical compliance.
摘要:
A method for calculating pressures in a fluid streaming through a tube section from an upstream end to a downstream end of the tube section, the method comprising scanning the tube section with a scanner and providing a plurality of 2D scanning images along the tube section with an inlet and at least two arms, by a computer program on the basis of the 2D images automatically N calculating a 3D image of the tube section by using interpolating between the 2D images, by a computer program performing a 2D sectional image cut through the 3D image, the image cut following the fluid stream, calculating in the sectional image cut a fluid pressure distribution along multiple locations inside the tube on the basis of given boundary conditions, the boundary conditions including fluid velocity or fluid pressure at the upstream end.
摘要:
Process for suppressing the formation of solid carbon in a fuel cell comprising contacting a hydrocarbon feedstock with a promoted nickel-comprising anode, the promoter including gold or silver in an amount of 0.001 to 30% by weight calculated on the amount of nickel in the anode.
摘要:
A biosurface structure array (BSSA) comprising a plurality of tester areas whereby each area has a surface topology whose features are defined on a micro- or nanometer scale. The BBSA of the invention may further comprise adsorbed compounds to one or more of the tester fields, e.g. active biological compounds or polymers.
摘要:
A method of making a three-dimensional biocompatible scaffold capable of supporting cell activities such as growth and differentiation, the method includes providing a supporting grid that forms an open network and provides mechanical support of a second biocompatible material. The second biocompatible material has interconnected cavities that allow nutrients, metabolites and soluble factors to diffuse throughout the scaffold. The scaffold design can be understood as a hierarchically organised structure. At the micron to submicron length scale a top/down manufacturing approach is used to make a structure that will constitute the frame into which a bottom/up processing approach is applied to form an open porous scaffold with specific nano sized features. The advantage of this hierarchically organised design is that benefits can be drawn independently from both the micron and the nano sized structures, promoting specific cell activities and providing sufficient mechanical compliance.
摘要:
A device for biological purposes such as cell culturing, enzymatic reactions or filtering of fluid has a body with first and second surfaces. The body is delimited by a rim and an aperture in the center of the body. The aperture is covered at the first and second surface by first and second plates. The first and/or second plate has an inlet orifice allowing liquid medium into the aperture. Rotating means are arranged in the aperture between the first and second plate. At least one recessed portion is a cavity in the rim of the body having a first outlet orifice allowing the liquid medium to flow out of the body. At least one outlet channel connects the circular aperture with the recessed portion. Liquid is pumped into the aperture of the device and pumped through at least one outlet channel.