摘要:
Capacitors and methods of forming capacitors are described. According to one implementation, a capacitor opening is formed over a substrate node location. Electrically conductive material is subsequently formed within the capacitor opening and makes an electrical connection with the node location. A protuberant insulative structure is formed within the capacitor opening and includes a lateral outer surface at least a portion of which is supported by and extends elevationally below adjacent conductive material. First and second capacitor plates and a dielectric layer therebetween are formed within the capacitor opening and supported by the protuberant structure. In one aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure substantially, if not completely filling in the void. In another aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure only partially filling in the void to provide a tubular structure.
摘要:
Capacitors and methods of forming capacitors are described. According to one implementation, a capacitor opening is formed over a substrate node location. Electrically conductive material is subsequently formed within the capacitor opening and makes an electrical connection with the node location. A protuberant insulative structure is formed within the capacitor opening and includes a lateral outer surface at least a portion of which is supported by and extends elevationally below adjacent conductive material. First and second capacitor plates and a dielectric layer therebetween are formed within the capacitor opening and supported by the protuberant structure. In one aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure substantially, if not completely filling in the void. In another aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure only partially filling in the void to provide a tubular structure.
摘要:
Capacitors and methods of forming capacitors are described. According to one implementation, a capacitor opening is formed over a substrate node location. Electrically conductive material is subsequently formed within the capacitor opening and makes an electrical connection with the node location. A protuberant insulative structure is formed within the capacitor opening and includes a lateral outer surface at least a portion of which is supported by and extends elevationally below adjacent conductive material. First and second capacitor plates and a dielectric layer therebetween are formed within the capacitor opening and supported by the protuberant structure. In one aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure substantially, if not completely filling in the void. In another aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure only partially filling in the void to provide a tubular structure.
摘要:
This invention is a process for forming an effective titanium nitride barrier layer between the upper surface of a polysilicon plug formed in thick dielectric layer and a platinum lower capacitor plate in a dynamic random access memory which is being fabricated on a silicon wafer. The barrier layer process begins by etching the upper surface of the polysilicon plug using a selective polysilicon etch until it is recessed at least 1000 .ANG. below the upper surface of the thick dielectric layer. Using a collimated sputter source, a titanium layer having a thickness of 100-500 .ANG. is deposited over the surface of the in-process wafer, thus covering the upper surfaces of the polysilicon plugs. A layer of amorphous titanium carbonitride having a thickness of 100-300 .ANG. is then deposited via low-pressure chemical vapor deposition. This is followed by the deposition of a reactively sputtered titanium nitride layer having a thickness of 1000-2000 .ANG.. The wafer is then planarized to remove the titanium, titanium carbonitride and titanium nitride, except that which is in the recesses on top of the silicon plugs. The wafer is then annealed in nitrogen to react the titanium layer with the silicon on the upper surfaces of the plugs to form titanium silicide. A platinum layer is then deposited and patterned to form lower capacitor electrodes which are electrically coupled to the polysilicon plugs through the titanium silicide, titanium nitride and titanium carbonitride layers.
摘要:
This invention is a process for forming an effective titanium nitride barrier layer between the upper surface of a polysilicon plug formed in a thick dielectric layer and a platinum lower capacitor plate in a dynamic random access memory which is being fabricated on a silicon wafer.
摘要:
This invention is a process for forming an effective titanium nitride barrier layer between the upper surface of a polysilicon plug formed in thick dielectric layer and a platinum lower capacitor plate in a dynamic random access memory which is being fabricated on a silicon wafer. The barrier layer process begins by etching the upper surface of the polysilicon plug using a selective polysilicon etch until it is recessed at least 1000 .ANG. below the upper surface of the thick dielectric layer. Using a collimated sputter source, a titanium layer having a thickness of 100-500 .ANG. is deposited over the surface of the in-process wafer, thus covering the upper surfaces of the polysilicon plugs. A layer of amorphous titanium carbonitride having a thickness of 100-300 .ANG. is then deposited via low-pressure chemical vapor deposition. This is followed by the deposition of a reactively sputtered titanium nitride layer having a thickness of 1000-2000 .ANG.. The wafer is then planarized to remove the titanium, titanium carbonitride and titanium nitride, except that which is in the recesses on top of the silicon plugs. The wafer is then annealed in nitrogen to react the titanium layer with the silicon on the upper surfaces of the plugs to form titanium silicide. A platinum layer is then deposited and patterned to form lower capacitor electrodes which are electrically coupled to the polysilicon plugs through the titanium silicide, titanium nitride and titanium carbonitride layers.
摘要:
This invention is a process for forming an effective titanium nitride barrier layer between the upper surface of a polysilicon plug formed in a thick dielectric layer and a platinum lower capacitor plate in a dynamic random access memory which is being fabricated on a silicon wafer.
摘要:
This invention is a process for forming an effective titanium nitride barrier layer between the upper surface of a polysilicon plug formed in a thick dielectric layer and a platinum lower capacitor plate in a dynamic random access memory which is being fabricated on a silicon wafer.
摘要:
A method of forming a thin film transistor relative to a substrate includes, a) providing a thin film transistor layer of polycrystalline material on a substrate, the polycrystalline material comprising grain boundaries; b) providing a fluorine containing layer adjacent the polycrystalline thin film layer; c) annealing the fluorine containing layer at a temperature and for a time period which in combination are effective to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries; and d) providing a transistor gate operatively adjacent the thin film transistor layer. The thin film transistor can be fabricated to be bottom gated or top gated. A buffering layer can be provided intermediate the thin film transistor layer and the fluorine containing layer, with the buffering layer being transmissive of fluorine from the fluorine containing layer during the annealing. Preferably, the annealing temperature is both sufficiently high to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries, but sufficiently low to prevent chemical reaction of the fluorine containing layer with the polycrystalline thin film layer.
摘要:
Processes are disclosed which facilitate improved high-density memory circuitry, most preferably dynamic random access memory (DRAM) circuitry. A semiconductor memory device includes i) a total of no more than 68,000,000 functional and operably addressable memory cells arranged in multiple memory arrays formed on a semiconductor die; and ii) circuitry formed on the semiconductor die permitting data to be written to and read from one or more of the memory cells, at least one of the memory arrays containing at least 100-square microns of continuous die surface area having at least 128 of the functional and operably addressable memory cells, more preferably, at least 100 square microns of continuous die surface area having at least 170 of the functional and operably addressable memory cells.