摘要:
In an etch process for forming via openings and trench openings in a low-k dielectric layer, the material removal of an underlying etch stop layer is decoupled from the etching through the low-k dielectric in that the reduction in thickness is substantially achieved during the resist removal. For this purpose, the resist plasma etch may correspondingly be controlled to obtain the desired target thickness of the etch stop layer, wherein fluorine may be provided from an external source and/or fluorine may be generated in a controlled manner from polymer layers deposited within the etch chamber.
摘要:
In an etch process for forming via openings and trench openings in a low-k dielectric layer, the material removal of an underlying etch stop layer is decoupled from the etching through the low-k dielectric in that the reduction in thickness is substantially achieved during the resist removal. For this purpose, the resist plasma etch may correspondingly be controlled to obtain the desired target thickness of the etch stop layer, wherein fluorine may be provided from an external source and/or fluorine may be generated in a controlled manner from polymer layers deposited within the etch chamber.
摘要:
During the formation of a transistor element, sidewalls spacers are removed or at least partially etched back after ion implantation and silicidation, thereby rendering the mechanical coupling of a contact etch stop layer to the underlying drain and source regions more effective. Hence, the mechanical stress may be substantially induced by the contact etch step layer rather than by a combination of the spacer elements and the etch stop layer, thereby significantly facilitating the stress engineering in the channel region. By additionally performing a plasma treatment, different amounts of stress may be created in different transistor devices without unduly contributing to process complexity.
摘要:
By performing a first common etch process for forming a via opening and a delineation trench or open area in a metallization layer with different removal rates, the etch front in the delineation trench or open area may be delayed, thereby significantly reducing the probability of wafer arcing. Subsequently, the delineation trench or open area may be etched down to the respective etch stop layer in a further common etch process, during which a trench is formed above the via opening.
摘要:
During the formation of a metal line in a low-k dielectric material, an upper portion of a trench formed in a capping layer and the low-k dielectric material is treated to provide enlarged tapering or corner rounding, thereby significantly improving the fill capabilities of subsequent metal deposition processes. In one particular embodiment, an additional etch process is performed after etching through the capping layer and the low-k dielectric layer and after resist removal.
摘要:
By providing a contact etch stop layer, the stress in channel regions of different transistor types may be effectively controlled, wherein tensile and compressive stress portions of the contact etch stop layer may be obtained by well-established processes, such as wet chemical etch, plasma etch, ion implantation, plasma treatment and the like. Hence, a significant improvement in transistor performance may be obtained while not significantly contributing to process complexity.
摘要:
During the formation of a metal line in a low-k dielectric material, an upper portion of a trench formed in a capping layer and the low-k dielectric material is treated to provide enlarged tapering or corner rounding, thereby significantly improving the fill capabilities of subsequent metal deposition processes. In one particular embodiment, an additional etch process is performed after etching through the capping layer and the low-k dielectric layer and after resist removal.
摘要:
By performing a first common etch process for forming a via opening and a delineation trench or open area in a metallization layer with different removal rates, the etch front in the delineation trench or open area may be delayed, thereby significantly reducing the probability of wafer arcing. Subsequently, the delineation trench or open area may be etched down to the respective etch stop layer in a further common etch process, during which a trench is formed above the via opening.
摘要:
During the formation of a transistor element, sidewalls spacers are removed or at least partially etched back after ion implantation and silicidation, thereby rendering the mechanical coupling of a contact etch stop layer to the underlying drain and source regions more effective. Hence, the mechanical stress may be substantially induced by the contact etch step layer rather than by a combination of the spacer elements and the etch stop layer, thereby significantly facilitating the stress engineering in the channel region. By additionally performing a plasma treatment, different amounts of stress may be created in different transistor devices without unduly contributing to process complexity.
摘要:
By providing a contact etch stop layer, the stress in channel regions of different transistor types may be effectively controlled, wherein tensile and compressive stress portions of the contact etch stop layer may be obtained by well-established processes, such as wet chemical etch, plasma etch, ion implantation, plasma treatment and the like. Hence, a significant improvement in transistor performance may be obtained while not significantly contributing to process complexity.