摘要:
A dielectric layer is patterned with at least one line trough and/or at least one via cavity. A metallic nitride liner is formed on the surfaces of the patterned dielectric layer. A metal liner is formed on the surface of the metallic nitride liner. A conformal copper nitride layer is formed directly on the metal liner by atomic layer deposition (ALD) or chemical vapor deposition (CVD). A Cu seed layer is formed directly on the conformal copper nitride layer. The at least one line trough and/or the at least one via cavity are filled with an electroplated material. The direct contact between the conformal copper nitride layer and the Cu seed layer provides enhanced adhesion strength. The conformal copper nitride layer may be annealed to covert an exposed outer portion into a contiguous Cu layer, which may be employed to reduce the thickness of the Cu seed layer.
摘要:
A dielectric layer is patterned with at least one line trough and/or at least one via cavity. A metallic nitride liner is formed on the surfaces of the patterned dielectric layer. A metal liner is formed on the surface of the metallic nitride liner. A conformal copper nitride layer is formed directly on the metal liner by atomic layer deposition (ALD) or chemical vapor deposition (CVD). A Cu seed layer is formed directly on the conformal copper nitride layer. The at least one line trough and/or the at least one via cavity are filled with an electroplated material. The direct contact between the conformal copper nitride layer and the Cu seed layer provides enhanced adhesion strength. The conformal copper nitride layer may be annealed to covert an exposed outer portion into a contiguous Cu layer, which may be employed to reduce the thickness of the Cu seed layer.
摘要:
The invention is directed to a method for removing copper oxide from a copper surface to provide a clean copper surface, wherein the method involves exposing the copper surface containing copper oxide thereon to an anhydrous vapor containing a carboxylic acid compound therein, wherein the anhydrous vapor is generated from an anhydrous organic solution containing the carboxylic acid and one or more solvents selected from hydrocarbon and ether solvents.
摘要:
The invention is directed to a method for removing copper oxide from a copper surface to provide a clean copper surface, wherein the method involves exposing the copper surface containing copper oxide thereon to an anhydrous vapor containing a carboxylic acid compound therein, wherein the anhydrous vapor is generated from an anhydrous organic solution containing the carboxylic acid and one or more solvents selected from hydrocarbon and ether solvents.
摘要:
A metal interconnect structure provides high adhesive strength between copper atoms in a copper-containing structure and a self-aligned copper encapsulation layer, which is selectively deposited only on exposed copper surfaces. A lower level metal interconnect structure comprises a first dielectric material layer and a copper-containing structure embedded in a lower metallic liner. After a planarization process that forms the copper-containing structure, a material that forms Cu—S bonds with exposed surfaces of the copper-containing structure is applied to the surface of the copper-containing structure. The material is selectively deposited only on exposed Cu surfaces, thereby forming a self-aligned copper encapsulation layer, and provides a high adhesion strength to the copper surface underneath. A dielectric cap layer and an upper level metal interconnect structure can be subsequently formed on the copper encapsulation layer.
摘要:
A metal interconnect structure provides high adhesive strength between copper atoms in a copper-containing structure and a self-aligned copper encapsulation layer, which is selectively deposited only on exposed copper surfaces. A lower level metal interconnect structure comprises a first dielectric material layer and a copper-containing structure embedded in a lower metallic liner. After a planarization process that forms the copper-containing structure, a material that forms Cu—S bonds with exposed surfaces of the copper-containing structure is applied to the surface of the copper-containing structure. The material is selectively deposited only on exposed Cu surfaces, thereby forming a self-aligned copper encapsulation layer, and provides a high adhesion strength to the copper surface underneath. A dielectric cap layer and an upper level metal interconnect structure can be subsequently formed on the copper encapsulation layer.
摘要:
Vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with vertical stacks of a metal portion and a semiconductor portion formed on a second substrate. Alternately, vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with metal portions formed on a second substrate. The assembly of the first and second substrates is subjected to an anneal at a temperature that induces formation of a metal semiconductor alloy derived from the semiconductor portions and the metal portions. The first substrate and the second substrate are bonded through metal semiconductor alloy portions that adhere to the first and second substrates.
摘要:
A solar cell includes a substrate having an N-region and a P-region, a first anti-reflective layer disposed on the substrate, a metallic contact disposed on the first anti-reflective layer, a second anti-reflective layer disposed on the first anti-reflective layer and the metallic contact, and a region partially defined by the first anti-reflective layer and the second anti-reflective layer having diffused metallic contact material operative to form a conductive path to the substrate through the first anti-reflective layer, the metallic contact, and the second anti-reflective layer.
摘要:
A method for fabricating a cell structure includes doping a substrate to form a N-region and a P-region, disposing a first anti-reflective layer on the substrate, disposing a metallic contact paste on the first anti-reflective layer, drying the metallic contact paste to form contacts, disposing a second anti-reflective layer on the first anti-reflective layer and the metallic contacts, and heating the cell structure, wherein heating the cell structure results in metallic contact material penetrating the first anti-reflective layer and contacting the substrate.
摘要:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device, such as a field effect transistor, that includes a spacer shaped metal gate located over a channel within a semiconductor substrate that separates a plurality of source and drain regions within the semiconductor substrate. Within the semiconductor structure, the plurality of source and drain regions is asymmetric with respect to the spacer shaped metal gate. The particular semiconductor structure may be fabricated using a self aligned dummy gate method that uses a portion of a spacer as a self alignment feature when forming the spacer shaped metal gate, which may have a sub-lithographic linewidth.