摘要:
The present invention relates to a method for performing a logic built-in self-test (LBIST) on an electronic circuit with a plurality of logic circuits (18, 20, 22, 24) and storage elements (14, 16) connected serially to a number of LBIST stumps (10, 12) between a pseudo-random-pattern generator (26) and a multiple-input-signature register (28), wherein at least one constrained logic circuit (18) requires constrained values as input signals. Said method comprises the following steps: scanning the LBIST stumps (10, 12) with the pseudo-random-pattern generator (26), deactivating the multiple-input-signature register (28), performing a functional update in order to propagate legal values into those storage elements (16), which require constrained values, activating or resetting (51) the multiple-input-signature register (28), and setting or programming a start value in a counter (42) for activating a loop back circuit (34) in order to avoid an overwriting of the well-constrained values in the storage elements (16).
摘要:
The present invention relates to a method for performing a logic built-in self-test (LBIST) on an electronic circuit with a plurality of logic circuits (18, 20, 22, 24) and storage elements (14, 16) connected serially to a number of LBIST stumps (10, 12) between a pseudo-random-pattern generator (26) and a multiple-input-signature register (28), wherein at least one constrained logic circuit (18) requires constrained values as input signals. Said method comprises the following steps: scanning the LBIST stumps (10, 12) with the pseudo-random-pattern generator (26), deactivating the multiple-input-signature register (28), performing a functional update in order to propagate legal values into those storage elements (16), which require constrained values, activating or resetting (51) the multiple-input-signature register (28), and setting or programming a start value in a counter (42) for activating a loop back circuit (34) in order to avoid an overwriting of the well-constrained values in the storage elements (16).
摘要:
Techniques for accounting microprocessor resource consumption. The present invention provides an automatic method to timely determine the current microprocessor clock frequency. Information provided by timer facilities of the microprocessor is reused by sampling this information at constant intervals. Such direct derivation of the microprocessor clock frequency is a real-time method that also takes into consideration secondary effects. Examples for such secondary effects include clock frequency variations across chips due to manufacturing variations, any degradation due to performance loss by thermal, or other detrimental effects as well as any voltage changes. In the preferred embodiment of the invention, the real-time microprocessor clock frequency determination is implemented as part of the microprocessor itself. No additional service processors or other external hardware facilities are needed in order to control the microprocessor clock frequency determination function.
摘要:
Techniques for accounting microprocessor resource consumption. The present invention provides an automatic method to timely determine the current microprocessor clock frequency. Information provided by timer facilities of the microprocessor is reused by sampling this information at constant intervals. Such direct derivation of the microprocessor clock frequency is a real-time method that also takes into consideration secondary effects. Examples for such secondary effects include clock frequency variations across chips due to manufacturing variations, any degradation due to performance loss by thermal, or other detrimental effects as well as any voltage changes. In the preferred embodiment of the invention, the real-time microprocessor clock frequency determination is implemented as part of the microprocessor itself. No additional service processors or other external hardware facilities are needed in order to control the microprocessor clock frequency determination function.
摘要:
Reduction of power consumption and chip area of a microprocessor employing speculative performance counting, comprising splitting a counter and a backup register of a speculative counting mechanism performing the speculative performance counting into first and second parts each, re-using an available storage within the microprocessor as first parts respectively; integrating at least one dedicated pre-counter into the microprocessor as second parts respectively; splitting the data handled by the speculative counting mechanism in high-order and low-order bits; storing the high order bits in the first parts; storing the low order bits in the second parts; updating the first parts periodically; and saving and propagating the carry-out from the second parts to high-order bits when a corresponding first part of the second parts is next updated respectively.
摘要:
Redundant time-of-day (TOD) oscillators are aligned, within a master oscillator path, to local logic oscillator and used to create independent step-sync signals. A step checker validates and provides selection signals to identify which of the TOD oscillators operates according to a criterion. Independent step-sync signals are transmitted to several sibling chips. Local step and sync signals are delayed to arrive at TOD register nearly synchronous with TOD registers in sibling chips. A slave oscillator path may be used to select time signals generated in a sibling chip, whereby the master oscillator path is deselected. A primary control register set may be used to configure which among several chips is a master chip using the master oscillator path. All remaining chips are slave chips. All segments of the topology are redundant. One of multiple possible alternate topologies is defined in a secondary control register set. Commands and TOD values are passed on the fabric at predefined time increment boundaries to establish, restore, or maintain synchronization across all chips.
摘要:
Redundant time-of-day (TOD) oscillators are aligned, within a master oscillator path, to local logic oscillator and used to create independent step-sync signals. A step checker validates and provides selection signals to identify which of the TOD oscillators operates according to a criterion. Independent step-sync signals are transmitted to several sibling chips. Local step and sync signals are delayed to arrive at TOD register nearly synchronous with TOD registers in sibling chips. A slave oscillator path may be used to select time signals generated in a sibling chip, whereby the master oscillator path is deselected. A primary control register set may be used to configure which among several chips is a master chip using the master oscillator path. All remaining chips are slave chips. All segments of the topology are redundant. One of multiple possible alternate topologies is defined in a secondary control register set. Commands and TOD values are passed on the fabric at predefined time increment boundaries to establish, restore, or maintain synchronization across all chips.
摘要:
Redundant time-of-day (TOD) oscillators are aligned, within a master oscillator path, to local logic oscillator and used to create independent step-sync signals. A step checker validates and provides selection signals to identify which of the TOD oscillators operates according to a criterion. Independent step-sync signals are transmitted to several sibling chips. Local step and sync signals are delayed to arrive at TOD register nearly synchronous with TOD registers in sibling chips. A slave oscillator path may be used to select time signals generated in a sibling chip, whereby the master oscillator path is deselected. A primary control register set may be used to configure which among several chips is a master chip using the master oscillator path. All remaining chips are slave chips. All segments of the topology are redundant. One of multiple possible alternate topologies is defined in a secondary control register set. Commands and TOD values are passed on the fabric at predefined time increment boundaries to establish, restore, or maintain synchronization across all chips.
摘要:
Redundant time-of-day (TOD) oscillators are aligned, within a master oscillator path, to local logic oscillator and used to create independent step-sync signals. A step checker validates and provides selection signals to identify which of the TOD oscillators operates according to a criterion. Independent step-sync signals are transmitted to several sibling chips. Local step and sync signals are delayed to arrive at TOD register nearly synchronous with TOD registers in sibling chips. A slave oscillator path may be used to select time signals generated in a sibling chip, whereby the master oscillator path is deselected. A primary control register set may be used to configure which among several chips is a master chip using the master oscillator path. All remaining chips are slave chips. All segments of the topology are redundant. One of multiple possible alternate topologies is defined in a secondary control register set. Commands and TOD values are passed on the fabric at predefined time increment boundaries to establish, restore, or maintain synchronization across all chips.
摘要:
Redundant time-of-day (TOD) oscillators are aligned, within a master oscillator path, to local logic oscillator and used to create independent step-sync signals. A step checker validates and provides selection signals to identify which of the TOD oscillators operates according to a criterion. Independent step-sync signals are transmitted to several sibling chips. Local step and sync signals are delayed to arrive at TOD register nearly synchronous with TOD registers in sibling chips. A slave oscillator path may be used to select time signals generated in a sibling chip, whereby the master oscillator path is deselected. A primary control register set may be used to configure which among several chips is a master chip using the master oscillator path. All remaining chips are slave chips. All segments of the topology are redundant. One of multiple possible alternate topologies is defined in a secondary control register set. Commands and TOD values are passed on the fabric at predefined time increment boundaries to establish, restore, or maintain synchronization across all chips.