摘要:
The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
摘要:
The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
摘要:
A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
摘要:
The invention includes methods of forming recessed access devices. A substrate is provided to have recessed access device trenches therein. A pair of the recessed access device trenches are adjacent one another. Electrically conductive material is formed within the recessed access device trenches, and source/drain regions are formed proximate the electrically conductive material. The electrically conductive material and source/drain regions together are incorporated into a pair of adjacent recessed access devices. After the recessed access device trenches are formed within the substrate, an isolation region trench is formed between the adjacent recessed access devices and filled with electrically insulative material to form a trenched isolation region.
摘要:
Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
摘要:
A method of forming a local interconnect for a semiconductor integrated circuit, the local interconnect comprising a refractory silicide contact having a substantially small sheet resistance formed at an exhumed surface of a gate stack, wherein the local interconnect electrically couples a gate electrode of the gate stack with an active region of the semiconductor substrate. The method of forming the local interconnect comprises depositing a gate oxide layer over the substrate, a first polysilicon layer over the gate oxide layer, a laterally conducting layer over the polysilicon layer, a second polysilicon layer over the laterally conducting layer, and an insulating layer over the second polysilicon layer. The intermediate structure is then etched so as to form a plurality of gate stacks. A surface of the second polysilicon layer of a gate stack is exhumed so as to allow subsequent formation of the refractory silicide contact at the exhumed surface. A plurality of spacers are formed along the vertical surfaces of the gate stacks and the substrate is selectively doped so as to form active regions within the substrate. A layer of titanium is deposited over the substrate and a silicon source and/or hardmask material layer is deposited over the titanium layer so as to extend between the gate electrode and the active region of the silicon. The mask layer is then patterned in an etching process so that the mask layer defines the extent of the local interconnect structure. The intermediate structure is then exposed to a high temperature N2/NH3 ambient which induces the formation of refractory silicide contacts at the exhumed surface of the polysilicon layer of the gate stack and at the active region of the substrate as well as the formation of refractory nitride (TiN) at the exposed portions of the titanium layer. A selective wet etch follows which removes the exposed unreacted titanium and exposed titanium nitride and leaves behind the local interconnect.