摘要:
An electro-optical device includes a pixel circuit, and a driving circuit. The pixel circuit includes a driving transistor, a first capacitive element, an electro-optical element, and a switch. The driving circuit controls the switch to be turned off, varies a potential such that the driving transistor is turned on, during a first period, sets a potential at a control terminal to a compensation initial value by controlling the switch to be turned on, during a second period, supplies a grayscale potential corresponding to a designated grayscale, varies a driving potential such that the driving transistor is turned on, during a third period, and varies a voltage between the control terminal and a first terminal with the passage of time, during a fourth period.
摘要:
A method for driving a light-emitting device in which a plurality of pixel circuits are arranged in correspondence with the intersection of a plurality of scanning lines and a plurality data lines, the pixel circuit having a light-emitting element and a driving transistor that controls the current amount of a driving current flowing the light-emitting device, comprises repeating the process within unit period including a first period and a second period following the first period, wherein the second period process includes selecting one scanning line of the plurality of scanning lines, and supplying and holding a data voltage corresponding to the luminance of the light-emitting element to a gate of the driving transistor via the data lines with respect to the plurality pixel circuits connected the selected scanning lines, and wherein the first period process includes selecting two or more scanning lines of the plurality of scanning lines, and correcting the unbalance of the driving current output from the driving transistor in the plurality of pixel circuits connected to the selected scanning lines.
摘要:
To reduce time for writing a target voltage in the gate of a driving transistor. In a first period, a transistor 211 is switched on to allow a driving transistor 210 to function as a diode and transistors 212 and 213 are switched on to electrically connect the drain of the driving transistor 210 to a data line 112, to which an initial voltage is applied, such that the initial voltage is applied to the gate of the driving transistor 210. In a second period, a transistor 212 is switched off such that the gate of the driving transistor 210 is maintained to have an off voltage corresponding to the power source. In a third period, the transistor 211 is switched off such that the voltage of the data line 112 is converted into a grayscale voltage to maintain the gate of the driving transistor at the target voltage. In a fourth period, the driving transistor 210 flows the current corresponding to the maintained gate voltage to an OLED element 230.
摘要:
A method of manufacturing an electro-optical device having a plurality of unit regions arranged in a matrix on a surface of a flat plate-shaped base substrate. In each of the plurality of unit regions, a pixel electrode is formed. A counter electrode is formed on an opposite side to the base substrate with respect to the pixel electrodes. In pixel regions, which are first unit regions constituting a predetermined image among the plurality of unit regions, OLED elements are selectively formed. The OLED elements are interposed between the respective pixel electrodes and the counter electrode. In non-pixel regions, which are second unit regions other than the first unit regions among the plurality of unit regions, insulators are formed. The insulators are interposed between the respective pixel electrodes and the counter electrode.
摘要:
The invention provides an electro-optical device having circuits for driving electro-optical elements, such as organic EL elements, and a driving device, which can employ driving elements having low driving ability, such as α-TFTs. By providing a charge storage capacitor between the source electrode and the gate electrode of a driving transistor which is between power sources, the electro-optical device can allow the driving transistor to control a driving current, even when an electro-optical element is connected to the source side of the driving transistor. In addition, driving data can be stored in the charge storage capacitor by applying a predetermined voltage to the source electrode of the driving transistor.
摘要:
The present invention provides a systems and methods to perform an electrical test on a substrate assembly used as a TFT array substrate of a liquid-crystal device without detaching a mounted external IC. The substrate assembly can include a substrate, a peripheral circuit embedded in the substrate, a first wiring arranged on the substrate, and an external IC, mounted on the substrate, and having a first terminal connected to an interconnection portion arranged on the first wiring. The substrate assembly can further include a second wiring which extends from the interconnection portion in such a manner that the second wiring is routed in a portion of the substrate facing the integrated circuit, and a first external circuit connection terminal arranged on the second wiring in a portion of the substrate not facing the integrated circuit. The external IC is thus tested through the external circuit connection terminal.
摘要:
An electro-optical device includes a plurality of pixel circuits that are disposed to correspond to intersections of a plurality of scanning lines and a plurality of data lines, a scanning line driving circuit that sequentially selects the plurality of scanning lines to apply a selection voltage to the selected scanning line, a data line driving circuit that applies any one of an on voltage and an off voltage to the plurality of data lines in accordance with gray-scale levels of pixel circuits corresponding to intersections of the data lines and the selected scanning line by the scanning line driving circuit, and a signal supply circuit that supplies a driving signal, of which the level periodically changes, to a signal supply line. Each of the pixel circuits has a first transistor in which, when the on voltage is applied to a gate electrode, a first terminal is connected to a second terminal, an electro-optical element that is connected to the first terminal of the first transistor, a first capacitor one end of which is connected to the second terminal of the first transistor and simultaneously the other end of which is connected to the signal supply line, a second capacitor one end of which is connected to the gate electrode of the first transistor, and a second transistor in which, when the selection voltage is applied to a gate electrode connected to a corresponding scanning line, a first terminal connected to a corresponding data line is connected to a second terminal connected to one end of the second capacitor.
摘要:
To reduce a time for applying a target voltage to a gate of a driving transistor. During an initializing period, both ends of a capacitive element become a short-circuited state by turning on transistors, so that node A and B becomes a voltage made by subtracting the threshold voltage Vthp of the driving transistor from a power source voltage VEL. During a writing period, the transistor is turned on and a data signal X-j is supplied to change the voltage at the node B as much as a voltage corresponding the current which is to flow into an OLED element. The node A is changed from the threshold voltage as much as the value obtained by dividing the voltage change by capacity ratio. During a light-emitting period, the transistor is turned on, so that the current corresponding to the voltage at the node A flows through the OLED element.
摘要翻译:以减少将目标电压施加到驱动晶体管的栅极的时间。 在初始化期间,电容元件的两端通过导通晶体管而成为短路状态,使得节点A和B成为通过减去驱动晶体管的阈值电压V th thp而得到的电压 从电源电压V EL EL。 在写入周期期间,晶体管导通,并且提供数据信号X-j以将节点B处的电压改变为与流入OLED元件的电流相对应的电压。 节点A的阈值电压与通过将电压变化除以容量比得到的值相同。 在发光周期期间,晶体管导通,使得与节点A处的电压相对应的电流流过OLED元件。
摘要:
An electro-optical device is provided that can accurately supply voltages, which correspond to analog image signals, to pixels without being affected by switching noise and leakage, and that can perform high speed sampling of analog image signals. An analog image signal is first held in a capacitor. Thereafter, this analog image signal is converted by an A/D converter into a digital signal in a time that is shorter than one horizontal scanning period. Subsequently, the digital signal is held in a latch. Further, when the analog image signal is applied to a data line, the transfer of the digital signal from the latch to another latch and the D/A conversion thereof by a D/A converter are performed.
摘要:
To suppress an off leak current of a switching element arranged along a data line to control degradation of tonal gradation in an arrangement in which an organic electro-luminescent element OLED is driven using a current programming method, a first switching element is set to be in a non-conductive state and a second switching element is set to be in a conductive state during a normal mode. During a test mode, the first switching element is set to be in a conductive state while the second switching element is set to be in a non-conductive state.