Abstract:
Techniques herein include methods for selectively modifying chemical properties of organosilicates including periodic mesoporous organosilicates (PMOs) in situ for use in fabrication of semiconductor devices. With techniques herein, such materials are manipulated in their chemical properties after deposition and can accordingly be used as sacrificial patterning films and/or as patterning enabling materials. Using selective treatments such as annealing, curing, plasma exposure, and silylation, chemical properties such as etch resistance and hydrophobicity can be changed to enable a given patterning operation. A given film can be etch resistant for one patterning operation, and then changed to be etch removable for a subsequent patterning operation.
Abstract:
A processing method is disclosed that enables an improved directed self-assembly (DSA) processing scheme by allowing the formation of improved guide strips in the DSA template that may enable the formation of sub-30 nm features on a substrate. The improved guide strips may be formed by improving the selectivity of wet chemical processing between different organic layers or films. In one embodiment, treating the organic layers with one or more wavelengths of ultraviolet light may improve selectivity. The first wavelength of UV light may be less than 200 nm and the second wavelength of UV light may be greater than 200 mn.
Abstract:
This disclosure relates to a processing system for spin-coating a substrate with Molecular Self-assembly (MSA) chemicals to form photoresist films and/or low dielectric constant (low-k) films on the substrate. The spin-coating processing system may include a spin-coating chamber that can receive and spin-coat MSA chemicals onto the substrate and an annealing chamber to thermally treat the substrate after the spin-coat process. In certain embodiments, the spin-coating processing system may also pre-treat or pre-wet the substrate prior to the spin-coating process.
Abstract:
A processing method is disclosed that enables an improved directed self-assembly (DSA) processing scheme by allowing the formation of improved guide strips in the DSA template that may enable the formation of sub-30 nm features on a substrate. The improved guide strips may be formed by improving the selectivity of wet chemical processing between different organic layers or films. In one embodiment, treating the organic layers with one or more wavelengths of ultraviolet light may improve selectivity. The first wavelength of UV light may be less than 200 nm and the second wavelength of UV light may be greater than 200 mn.
Abstract:
Techniques herein include methods for selectively modifying chemical properties of organosilicates including periodic mesoporous organosilicates (PMOs) in situ for use in fabrication of semiconductor devices. With techniques herein, such materials are manipulated in their chemical properties after deposition and can accordingly be used as sacrificial patterning films and/or as patterning enabling materials. Using selective treatments such as annealing, curing, plasma exposure, and silylation, chemical properties such as etch resistance and hydrophobicity can be changed to enable a given patterning operation. A given film can be etch resistant for one patterning operation, and then changed to be etch removable for a subsequent patterning operation.
Abstract:
This disclosure relates to a processing system for spin-coating a substrate with Molecular Self-assembly (MSA) chemicals to form photoresist films and/or low dielectric constant (low-k) films on the substrate. The spin-coating processing system may include a spin-coating chamber that can receive and spin-coat MSA chemicals onto the substrate and an annealing chamber to thermally treat the substrate after the spin-coat process. In certain embodiments, the spin-coating processing system may also pre-treat or pre-wet the substrate prior to the spin-coating process.
Abstract:
A processing method is disclosed that enables an improved directed self-assembly (DSA) processing scheme by allowing the formation of improved guide strips in the DSA template that may enable the formation of sub-30 nm features on a substrate. The improved guide strips may be formed by improving the selectivity of wet chemical processing between different organic layers or films. In one embodiment, treating the organic layers with one or more wavelengths of ultraviolet light may improve selectivity. The first wavelength of UV light may be less than 200 nm and the second wavelength of UV light may be greater than 200 nm.