Abstract:
Methods for cleaning substrates are described including cleaning substrates having hardmask masks and polymer films, such part of semiconductor fabrication. Cleaning methods include ultraviolet (UV) light exposure of process gas mixtures and liquid cleaning chemistries. A substrate and/or process fluids are exposed to ultraviolet radiation. A process gas mixture being irradiated can include an oxidizing gas mixture (air, clean dry air, oxygen, peroxygen, etc.). Reducing gas mixtures, having hydrogen, can also be irradiated. Reactive species from irradiated gas mixtures are exposed to the substrate to chemically modify film properties, such as by facilitating a subsequent liquid cleaning step. Liquid cleaning chemistries on a substrate surface can also be irradiated. Such cleaning techniques enable shorter cleaning times, lower processing temperatures, and reduced damage to underlying or intermediate layers such as dielectric layers.
Abstract:
Provided is a method for cleaning an ion implanted resist layer or a substrate after an ashing process. A duty cycle for turning on and turning off flows of a treatment liquid using two or more nozzles is generated. The substrate is exposed to the treatment liquid comprising a first treatment chemical, the first treatment chemical with a first film thickness, temperature, total flow rate, and first composition. A portion of a surface of the substrate is concurrently irradiated with UV light while controlling the selected plurality of cleaning operating variables in order to achieve the two or more cleaning objectives. The cleaning operating variables comprise two or more of the first temperature, first composition, first film thickness, UV wavelength, UV power, first process time, first rotation speed, duty cycle, and percentage of residue removal are optimized to achieve the two or more cleaning objectives.
Abstract:
Provided is a method for cleaning an on implanted resist layer or a substrate after an ashing process. A duty cycle for turning on and turning off flows of a treatment liquid using two or more nozzles is generated. The substrate is exposed to the treatment liquid comprising a first treatment chemical, the first treatment chemical with a first film thickness, temperature, total flow rate, and first composition. A portion of a surface of the substrate is concurrently irradiated with UV light while controlling the selected plurality of cleaning operating variables in order to achieve the two or more cleaning objectives. The cleaning operating variables comprise two or more of the first temperature, first composition, first film thickness, UV wavelength, UV power, first process time, first rotation speed, duty cycle, and percentage of residue removal are optimized to achieve the two or more cleaning objectives,
Abstract:
Provided are a method and system for increasing etch rate and etch selectivity of a masking layer on a substrate in an etch treatment system, the etch treatment system configured for single substrate processing. The method comprises placing the substrate into the etch processing chamber, the substrate containing the masking layer and a layer of silicon or silicon oxide, obtaining a supply of steam water vapor mixture at elevated pressure, obtaining a supply of treatment liquid for selectively etching the masking layer over the silicon or silicon oxide at a selectivity ratio, combining the treatment liquid and the steam water vapor mixture, and injecting the combined treatment liquid and the steam water vapor mixture into the etch processing chamber. The flow of the combined treatment liquid and the steam water vapor mixture is controlled to maintain a target etch rate and a target etch selectivity ratio of the masking layer to the layer of silicon or silicon oxide.
Abstract:
A method of process chemical temperature control for resist stripping of a substrate in a resist stripping system includes selecting at least two temperature control objectives and selecting at least two temperature control operating variables for optimization to achieve the at least two temperature control objectives. The method further includes injecting and mixing a first process chemical and a second process chemical into a treatment liquid delivery system of the resist stripping system, which forms a treatment liquid including an active species. The method further includes injecting vapor into the treatment liquid delivery system. The vapor is injected into the treatment liquid or the treatment liquid is injected into the vapor. Treatment liquid is dispensed from the dispensing device onto the substrate. At least two of the temperature control operating variables are adjusted in response to at least two metrology data values.
Abstract:
Provided are a method and system for increasing etch rate and etch selectivity of a masking layer on a substrate in an etch treatment system, the etch treatment system configured for single substrate processing. The method comprises placing the substrate into the etch processing chamber, the substrate containing the masking layer and a layer of silicon or silicon oxide, obtaining a supply of steam water vapor mixture at elevated pressure, obtaining a supply of treatment liquid for selectively etching the masking layer over the silicon or silicon oxide at a selectivity ratio, combining the treatment liquid and the steam water vapor mixture, and injecting the combined treatment liquid and the steam water vapor mixture into the etch processing chamber. The flow of the combined treatment liquid and the steam water vapor mixture is controlled to maintain a target etch rate and a target etch selectivity ratio of the masking layer to the layer of silicon or silicon oxide.
Abstract:
Systems and methods for cleaning a substrate include a combined treatment of hydrogen peroxide and ultraviolet (UV) irradiation. Specific embodiments include the direct irradiation with 185/254 nm UV of a spinning substrate immersed under a liquid film of dilute hydrogen peroxide solution. Such a cleaning treatment can result in about a 100% improvement of TiN strip rate compared to processing with the same hydrogen peroxide solution without UV exposure. Such method can also be executed at room temperature and still provide improved cleaning efficiency.
Abstract:
A processing method is disclosed that enables an improved directed self-assembly (DSA) processing scheme by allowing the formation of improved guide strips in the DSA template that may enable the formation of sub-30 nm features on a substrate. The improved guide strips may be formed by improving the selectivity of wet chemical processing between different organic layers or films. In one embodiment, treating the organic layers with one or more wavelengths of ultraviolet light may improve selectivity. The first wavelength of UV light may be less than 200 nm and the second wavelength of UV light may be greater than 200 mn.
Abstract:
Method and apparatus for rinsing and drying a semiconductor substrate having a first rinse liquid such as water on the substrate in a substrate processing system. The method includes dispensing onto the substrate liquid carbon dioxide to displace any liquid present on the substrate and to dry the substrate. The apparatus includes a chamber for rinsing and drying the substrate.
Abstract:
Systems for cleaning substrates including cleaning of semiconductor substrates, use atmospheric or sub-atmospheric ultraviolet (UV) light to improve selectivity of conventional wet chemical cleaning in the manufacture of semiconductor devices. The UV light systems are configured to improve front-end-of-line (FEOL) (e.g., non-metal) or back-end-of-line (BEOL) (e.g., metal) removal of etch by-products (e.g., polymers) and/or mask layers from underlying materials. Systems herein can be configured with multiple lamps that irradiate substrates, gasses, and liquids at different bandwidths. Selectivity and queue time is improved while reducing processing temperatures.