Abstract:
Disclosed is a substrate liquid processing apparatus including: a first processing liquid supply mechanism provided with a first tank in which a processing liquid is stored and a first nozzle through which the processing liquid stored in the first tank is ejected, and configured to supply the processing liquid to a first surface of a substrate by the first nozzle; a second processing liquid supply mechanism provided with a second tank in which a processing liquid having the same composition as the processed liquid stored in the first tank is stored and a second nozzle through which the processed liquid stored in the second tank is ejected, and configured to supply the processed liquid to a second surface of the substrate by the second nozzle; a processing unit configured to perform processing on the substrate using the processed liquids supplied by the first nozzle and the second nozzle; and a recovery line configured to recover the processed liquids which are supplied to the substrate from the first nozzle and the second nozzle and mixed with each other from the processing unit and return the recovered processed liquids to the second tank.
Abstract:
Disclosed is a substrate liquid processing apparatus including: a first processing liquid supply mechanism provided with a first tank in which a processing liquid is stored and a first nozzle through which the processing liquid stored in the first tank is ejected, and configured to supply the processing liquid to a first surface of a substrate by the first nozzle; a second processing liquid supply mechanism provided with a second tank in which a processing liquid having the same composition as the processed liquid stored in the first tank is stored and a second nozzle through which the processed liquid stored in the second tank is ejected, and configured to supply the processed liquid to a second surface of the substrate by the second nozzle; a processing unit configured to perform processing on the substrate using the processed liquids supplied by the first nozzle and the second nozzle; and a recovery line configured to recover the processed liquids which are supplied to the substrate from the first nozzle and the second nozzle and mixed with each other from the processing unit and return the recovered processed liquids to the second tank.
Abstract:
A substrate liquid processing apparatus includes a tank; a circulation line; a processing unit connected to the circulation line through a branch line and configured to perform a liquid processing on a substrate using a processing liquid flowing through the circulation line; a processing liquid producing mechanism configured to produce the processing liquid by mixing at least two kinds of raw material liquids supplied from respective raw material liquid sources at a controlled mixing ratio; a concentration measuring device configured to measure a concentration of the processing liquid flowing through the circulation line and a concentration of the processing liquid flowing through the processing liquid supply line; and a control device configured to control the processing liquid producing mechanism based on the measured concentrations of the processing liquid.
Abstract:
A substrate liquid processing apparatus includes a transfer section, a processing section, a reservoir and a liquid sending mechanism. The transfer section includes a transfer device configured to transfer a substrate. The processing section is provided adjacent to the transfer section in a horizontal direction, and includes a liquid processing unit configured to process the substrate by using a processing liquid. The reservoir is configured to store the processing liquid therein. The liquid sending mechanism is configured to send out the processing liquid stored in the reservoir into the liquid processing unit. The reservoir is disposed directly under the transfer section. Further, the liquid sending mechanism is disposed directly under the processing section. Space saving of the substrate liquid processing apparatus can be achieved.
Abstract:
A liquid processing apparatus includes a processing unit, a first supply route, a first device, a second supply route, a second device, a housing, and an external housing. The processing unit processes a substrate by using processing liquid including first and second processing liquids. The first supply route is for supplying the first processing liquid to the processing unit. The first device is for supplying the first processing liquid to the first supply route. The second supply route is for supplying the second processing liquid to the processing unit. The second processing liquid has higher temperature than the first processing liquid. The second device is for supplying the second processing liquid to the second supply route. The housing accommodates the processing unit. The external housing accommodates the first and second devices, and is adjacent to the housing. The external housing includes a partition wall between the first and second devices.
Abstract:
A liquid processing apparatus includes a processing unit, a first supply route, a first device, a second supply route, a second device, a housing, and an external housing. The processing unit processes a substrate by using processing liquid including first and second processing liquids. The first supply route is for supplying the first processing liquid to the processing unit. The first device is for supplying the first processing liquid to the first supply route. The second supply route is for supplying the second processing liquid to the processing unit. The second processing liquid has higher temperature than the first processing liquid. The second device is for supplying the second processing liquid to the second supply route. The housing accommodates the processing unit. The external housing accommodates the first and second devices, and is adjacent to the housing. The external housing includes a partition wall between the first and second devices.
Abstract:
A substrate liquid processing apparatus includes a tank; a circulation line; a processing unit connected to the circulation line through a branch line and configured to perform a liquid processing on a substrate using a processing liquid flowing through the circulation line; a processing liquid producing mechanism configured to produce the processing liquid by mixing at least two kinds of raw material liquids supplied from respective raw material liquid sources at a controlled mixing ratio; a concentration measuring device configured to measure a concentration of the processing liquid flowing through the circulation line and a concentration of the processing liquid flowing through the processing liquid supply line; and a control device configured to control the processing liquid producing mechanism based on the measured concentrations of the processing liquid.
Abstract:
A liquid supply device includes: a storage tank configured to store a processing liquid including a first processing liquid (sulfuric acid) and a second processing liquid (hydrogen peroxide solution); a circulation path having a first pipeline through which the processing liquid passes in a horizontal direction, and configured to circulate the processing liquid stored in the storage tank; a branch path configured to supply the processing liquid to a processing unit; and a branching part having an opening for allowing the processing liquid to flow out from the first pipeline to the branch path, wherein the opening is formed in the branching part and formed below a periphery of the first pipeline when the first pipeline is viewed in section.
Abstract:
There is disclosed a hollow tube body used for a liquid feeding member and deformable by pressurization, wherein: an axial cross-section of the tube body has two opposing long side parts and two opposing short side parts; four corner portions formed by the long side parts and the short side parts each have a shape curved to protrude outward; each of the long side parts has a recessed part recessed inward and continuing from the corner portions; and a portion other than the corner portions of each of the short side parts is in a flat shape.
Abstract:
A recovery route returns, to a retaining tank, mixed solution supplied to a substrate processing unit. A discarding route discards the supplied mixed solution to a place other than the retaining tank. A switching controller causes the supplied mixed solution to flow into the discarding route during a time interval until a first time interval has elapsed from a time point when the substrate processing unit starts to supply the mixed solution; causes the supplied mixed solution to flow into the recovery route during a time interval until a second time interval, which is decided based on a predetermined recovery rate, has elapsed after the first time interval elapses; and causes the supplied mixed solution to flow into the discarding route during a time interval until supply of the mixed solution has been ended from a time point when the second time interval elapses.