摘要:
A method. The method may include transmitting an optical noise signal to a first photodetector and a second photodetector within an optical receiver circuit that includes a transimpedance amplifier circuit. The method may further include measuring, in response to transmitting the optical noise signal, a power output from the optical receiver circuit. The method may further include determining, using the power output, a difference in photodetector responsivity between the first photodetector and the second photodetector. The method may further include adjusting, using a transimpedance gain controller, an amplifier gain within the optical receiver circuit to decrease a difference in photodetector responsivity between the first photodetector and the second photodetector.
摘要:
A method for monitoring a circuit. The method may include obtaining, using a total current monitoring device, a measurement of a current transmitted through a cathode in a photodetector circuit. The current may include a first photocurrent for a first photodetector and a second photocurrent for a second photodetector. The method may include obtaining, using a differential current monitoring device in a transimpedance amplifier circuit, a differential voltage proportional to a current difference between the first photocurrent and the second photocurrent. The transimpedance amplifier circuit may generate, using the first photocurrent and the second photocurrent, a first output signal and a second output signal. The method may include determining, using the differential voltage and the measurement of the current transmitted through the cathode, an amount of the first photocurrent and an amount of the second photocurrent.
摘要:
A method for monitoring a circuit. The method may include obtaining, using a total current monitoring device, a measurement of a current transmitted through a cathode in a photodetector circuit. The current may include a first photocurrent for a first photodetector and a second photocurrent for a second photodetector. The method may include obtaining, using a differential current monitoring device in a transimpedance amplifier circuit, a differential voltage proportional to a current difference between the first photocurrent and the second photocurrent. The transimpedance amplifier circuit may generate, using the first photocurrent and the second photocurrent, a first output signal and a second output signal. The method may include determining, using the differential voltage and the measurement of the current transmitted through the cathode, an amount of the first photocurrent and an amount of the second photocurrent.
摘要:
A Wavelength Division Multiplexed Passive Optical Network (WDM-PON) includes an Optical Line Terminal (OLT) including a first Arrayed Waveguide Grating (AWG) MUX/DEMUX, and a remote node including a second AWG MUX/DEMUX. Each AWG MUX/DEMUX has at least two input ports for receiving a respective wavelength division multiplexed optical signal, and a plurality of output ports. Each output port of the Optical Line Terminal AWG MUX/DEMUX is coupled to a respective transceiver of the OLT. Each output port of the remote node AWG MUX/DEMUX is coupled to a respective PON having at least one optical network terminal (ONT). Respective first and second optical paths are coupled between corresponding input ports of the first and second AWG MUX/DEMUXs. Means are provided for sourcing seed light of the WDM-PON into a selected one the first and second optical paths.
摘要:
Techniques for controlling a light source in a wavelength division multiplexed passive optical network (WDM-PON) are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for controlling a light source in a wavelength division multiplexed passive optical network (WDM-PON). The apparatus may include a digital signal processing device configured to output a pilot tone signal. The apparatus may also include an amplifier configured to modulate a modulation current and the pilot tone signal, and output an amplitude modulated signal. The apparatus may further include a capacitor configured to AC couple the amplitude modulated signal to a bias current applied to a light source; and a monitoring photodiode configured to detect an output optical signal of the light source and transmit the detected output optical signal to the digital signal processing device to control the output optical signal of the light source.
摘要:
Described is a method for controlling the wavelength of a laser in a wavelength division multiplexed (WDM) system. The method includes generating broadband light having a dithered optical power and a wavelength spectrum that includes a plurality of WDM wavelengths. The broadband light is spectrally filtered to generate a spectrally-sliced optical signal having a wavelength spectrum that includes one of the WDM wavelengths. The spectrally-sliced optical signal is injected into a laser and a dithered optical power of the laser is determined. A parameter of the laser is controlled in response to the determination of the dithered optical power to thereby align a wavelength of the laser to the wavelength spectrum of the spectrally-sliced optical signal.
摘要:
A Wavelength Division Multiplexed Passive Optical Network (WDM-PON) includes an Optical Line Terminal (OLT) including a first Arrayed Waveguide Grating (AWG) MUX/DEMUX, and a remote node including a second AWG MUX/DEMUX. Each AWG MUX/DEMUX has at least two input ports for receiving a respective wavelength division multiplexed optical signal, and a plurality of output ports. Each output port of the Optical Line Terminal AWG MUX/DEMUX is coupled to a respective transceiver of the OLT. Each output port of the remote node AWG MUX/DEMUX is coupled to a respective PON having at least one optical network terminal (ONT). Respective first and second optical paths are coupled between corresponding input ports of the first and second AWG MUX/DEMUXs. Means are provided for sourcing seed light of the WDM-PON into a selected one the first and second optical paths.
摘要:
Techniques for implementing a dual array waveguide filter for a wavelength division multiplexed passive optical network (WDM-PON) are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for implementing a dual waveguide filter for a wavelength division multiplexed passive optical network (WDM-PON). The apparatus may include a first light source configured to output a first broadband optical signal for generating a downstream optical signal. The apparatus may also include a second light source configured to output a second broadband optical signal for generating an upstream optical signal. The apparatus may further include a dual array waveguide filter having a first optical transmission path and a second optical transmission path, wherein the first optical transmission path is configured to spectrally slice the first broadband optical signal and the second optical transmission path is configured to demultiplex the upstream optical signal.
摘要:
Symbol decoding errors at a receiver utilising a flash analog to digital converter (ADC) can be reduced by adjusting a reference voltage level of the ADC where a decoding error rate at the reference voltage level exceeds a threshold.
摘要:
Symbol decoding errors at a receiver utilising a flash analog to digital converter (ADC) can be reduced by adjusting a reference voltage level of the ADC where a decoding error rate at the reference voltage level exceeds a threshold.