摘要:
The present invention provides a method for operating fluids of a chemical apparatus which performs reaction operations or unit operations by causing multiple kinds of fluids having different densities to join together through respective fluid supply passages and flow into one flow passage and forming a mutually continuous interface, wherein the flowing direction of the fluids in the flow passage is made substantially parallel to the direction of an acceleration to which the fluids are subjected, and an apparatus for manufacturing pigment particles to which the method for operating fluids of a chemical apparatus, in order to solve the problem that unit operations or reaction operations of multiple kinds of fluids cannot be uniformly performed.
摘要:
There is provided a method for producing chemicals using a device which carries out reaction operations or unit operations for fluids flowing through a flow channel, in which the reaction operations or unit operations for the object fluids can be controlled highly accurately, and besides, a functional fluid can be provided with various functions according to the type of the reaction operations or unit operations. The method produces chemicals using a device 10 in which a plurality of object liquids L1, L2 are fed through respective fluid-feeding channels 24, 28 therefor and joined together in a single flow channel 30 to carry out reaction operations or unit operations, the method including forming a functional layer between the object fluids by allowing a functional fluid having a function of controlling the reaction operations or unit operations to flow through the flow channel.
摘要:
A water-soluble organic solvent solution containing a natural ingredient that has been extracted from a natural animal or plant using a water-soluble organic solvent and an aqueous solution are passed through respective microflow channels each of which has a cross-sectional area at a narrowest portion of from 1 μm2 to 1 mm2; and thereafter mixed by a counter collision. Preferably, the water-soluble organic solvent is removed after the mixing. Also provided are a food, a skin external preparation, and a drug, each of which contains an emulsion or dispersion obtained thereby.
摘要:
According to the present invention, a continuous layer liquid used as a continuous layer of a diffusion phenomenon is injected into the first reservoir, and passed through the channels to the second reservoirs to fill the plurality of radially formed channels with the continuous layer liquid. Then, a predetermined amount of diffusion experiment reagent, for example, a coloring liquid used as a diffusion substance of the diffusion phenomenon is injected into the first reservoir. This causes the diffusion experiment reagent to be diffused from the first reservoir to the second reservoirs only by the diffusion phenomenon. At this time, the radially formed channels have the different sectional areas, and thus the diffusion experiment reagent is diffused through the channels at different velocities. This allows the diffusion phenomena that occur in the micro channels or the diffusion velocities to be observed or measured with ease using an inexpensive device.
摘要:
According to the invention, the plurality of long grooves each having a cross-sectional area of not more than 1 mm2 are formed, an end of each of the plurality of flow passages joins in at one meeting point and furthermore, a liquid delivering device is provided. Therefore, it is possible to qualitatively observe scientific phenomena, such as the dispersion phenomena of molecules. Also, accuracies sufficient for experiencing high technologies, for example, various phenomena such as the diffusion phenomenon of a liquid, heat transfer phenomenon of a liquid, mixing phenomenon of liquids and chemical reactions of a liquid that occur in this fine flow passage are obtained, consumption of chemical agents and the like is small and environmental burdens are small. Therefore, the scientific phenomena evaluation apparatus is appropriate as an educational tool for scientific experiments.
摘要:
An apparatus for evaluating scientific phenomena by feeding liquid to a minute channel, which is inexpensive, imposes little environmental load and enables advanced technology to be easily enjoyed and can eliminate experimental failures due to the clogging of the minute channel with a bubble, is provided. Before starting the experiment with the experimental liquid, the preparatory step of removing air in the minute channel by vigorously injecting inert dummy liquid which does not react with the experimental liquid into the minute channel and thereby filling the minute channel with the dummy liquid is carried out. If one round of preparatory step proves insufficient to wholly remove the air in the minute channel and a bubble is found in the dummy liquid, the step will be repeated until no bubble is found any longer in the dummy liquid. Next, the experiment is started by supplying the experimental liquid to inlet side liquid reservoirs and causing liquid feeding device to let the dummy liquid filling the minute channel flow to outlet side liquid reservoirs.
摘要:
In the scientific phenomena evaluation device of the present invention, a plurality of elongated grooves each having a cross-sectional area of not more than 1 mm2 are formed, an end of each of the plurality of flow passages joins in at one meeting point and furthermore, a liquid absorption device is provided. Therefore, it is possible to qualitatively observe scientific phenomena, such as the dispersion phenomena of molecules. Also, accuracies sufficient for experiencing high technologies, for example, various phenomena such as the diffusion phenomenon of a liquid, heat transfer phenomenon of a liquid, mixing phenomenon of liquids and chemical reactions of a liquid that occur in this fine flow passage are obtained, consumption of chemical agents and the like is small and environmental burdens are small. Therefore, this evaluation device of scientific phenomena is appropriate as an educational tool for scientific experiments.
摘要:
An evaluation apparatus of scientific phenomena, including: a base plate of a plate-like body on whose surface is formed an elongated groove having a transversely cross-sectional area of not more than 1 mm2; and a cover plate that is disposed on a surface of the base plate in close contact therewith and forms a fine flow passage on the base plate by covering the elongated groove, wherein scientific phenomena in the fine flow passage can be visually recognized.
摘要:
According to the scientific phenomenon evaluation device of the present invention, a test liquid is injected into the first reservoir while sample liquids are injected into the second reservoirs. When the test liquid is supplied to the second reservoirs by being caused to flow through the branching-structure channel, the test liquid and the sample liquid mix and react with each other to cause, for example, a scientific phenomenon such that the colors of the sample liquid change. Thus, the plurality of sample liquids can be evaluated by injecting the test liquid one time. In this case, the scientific phenomenon can be grasped with a single glance since at least the scientific phenomenon in the second reservoirs is visually recognizable. Moreover, the scientific phenomenon evaluation device of the present invention can be effectively used as a portable pH measurement experimental device.
摘要:
A method for experiment using a scientific phenomenon evaluation apparatus in which at least two reservoirs constituting an inlet and an outlet communicate with each other through a minute channel having a sectional area of 1 mm2 or less, the method comprising the steps of a preparatory step of removing air from the minute channel in advance by causing an inactive dummy liquid which does not react with an experimental liquid for performing an experiment to flow into and fill the minute channel, the preparatory step being performed at least one time and an experiment step of supplying the experimental liquid to the reservoir on the inlet side and feeding the experimental liquid into the minute channel by using a liquid feed device to cause the dummy liquid filling the minute channel to flow toward the reservoir on the outlet side.