摘要:
A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix and each configured to store data, and a test circuit configured to output to outside the semiconductor memory device an output signal indicative of an amount of test current flowing through a selected one of the plurality of memory cell transistors, wherein the test circuit includes a plurality of reference cell transistors employed to successively produce varying amounts of currents, a comparison circuit configured to successively compare the amount of test current with each of the varying amounts of currents, and a code generating circuit configured to generate a code indicative of a result of the successive comparisons performed by the comparison circuit, wherein the code is output as the output signal.
摘要:
A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix and each configured to store data, and a test circuit configured to output to outside the semiconductor memory device an output signal indicative of an amount of test current flowing through a selected one of the plurality of memory cell transistors, wherein the test circuit includes a plurality of reference cell transistors employed to successively produce varying amounts of currents, a comparison circuit configured to successively compare the amount of test current with each of the varying amounts of currents, and a code generating circuit configured to generate a code indicative of a result of the successive comparisons performed by the comparison circuit, wherein the code is output as the output signal.
摘要:
A distributed Bragg reflection (DBR) semiconductor laser is controlled in an image projecting apparatus. The image projecting apparatus includes the DBR semiconductor laser which is provided with a phase region and a DBR region, a light wavelength converting device for converting fundamental-wave light emitted from the DBR semiconductor laser into second harmonic wave light, an optical deflector for scanning the second harmonic wave in a one-dimensional or two-dimensional manner, and a modulating portion for modulating the DBR semiconductor laser based on an image signal. In the control method, a coefficient calculating step and a wavelength adjusting step are performed within a non-drawing time during which a drawing signal, which corresponds to the image signal, is absent. In the coefficient calculating step, at least one coefficient in a relationship between a DBR current to be injected into the DBR region and a phase current to be injected into the phase region for continuously shifting the wavelength of the fundamental-wave light is calculated. In the wavelength adjusting step, the DBR current injected into the DBR region and the phase current injected into the phase region are changed based on the relationship such that the second harmonic wave light is adjusted.
摘要:
A semiconductor laser element capable of changing an oscillation wavelength over a wide range without increasing a threshold current is disclosed. A wavelength selective filter capable of changing a selected wavelength over a wide range is also disclosed. The semiconductor laser element has a substrate and a laser resonator formed on the substrate by stacking semiconductor layers including an active layer and an optical waveguide layer of a superlattice structure. The resonator includes a first reflection portion, an active portion, a phase adjustment portion and second reflection portion which are juxtaposed in a resonance direction. Diffraction gratings are formed in the optical guide layer of the first and second reflection portions. Electrodes are independently formed in the active portion, the phase adjustment portion and the first and second reflection portions. Further, a method for driving the semiconductor laser is disclosed.
摘要:
This specification discloses an integrated type optical node comprising a substrate, a channel light waveguide formed on the substrate for connecting the transmission lines of an optical information system, an amplifying portion provided on the light waveguide for amplifying a light propagated through the waveguide, and a light branching-off portion provided on the light waveguide for coupling a light transmitter and/or a light receiver to the transmission lines. The specification also discloses an optical information system using such optical node.
摘要:
A nonlinear optical element comprises a nonlinear medium having photoconductivity and an electrooptical effect, a pair of electrodes, arranged on two side surfaces of said nonlinear medium, for applying an electric field to the medium, for serving as reflection mirrors forming an optical resonator, and a pair of insulating layers formed between the nonlinear medium and the electrodes. A predetermined DC voltage is supplied to the electrodes, and the nonlinear medium is irradiated with a light having a variable intensity. Thus, the reflectance and transmittance of the optical element is non-linearly varied in accordance with the intensity of the incident light. Also disclosed is a method for activating such a nonlinear optical element.
摘要:
A display element includes a substrate and a display pattern formed on the substrate, the display pattern including a diffraction grating. The width in the direction perpendicular to the grating lines of the diffraction grating of the display pattern is selected so as to prevent re-diffraction of the light diffracted by the one diffraction grating. An observation apparatus includes the afore-said display element, but the display pattern has a first diffraction grating structure and a second diffraction grating structure. An illuminating system and an observation system are added so as to allow for observation of the display pattern. The direction of the grating lines of the first diffraction grating structure differs from that of the grating lines of the second diffraction grating structure, thereby preventing the occurrence of a rainbow-like image.
摘要:
An optical wavelength converting apparatus includes a first semiconductor laser, a second semiconductor laser, and a wavelength converting element for converting first and second laser light from the first and second semiconductor lasers to sum frequency light. In this apparatus, the first semiconductor laser and the wavelength converting element are arranged so as to establish an external resonator structure in which the first laser light can be put under a resonant condition, and an optical path of the second laser light is so determined that the second laser light can propagate through the wavelength converting element.
摘要:
There is provided a harmonic generator generates high power laser light and can be modulated at high modulation rate. The semiconductor laser emits a first output light when a bias current is supplied, and a second output light when a modulating current is superposed to the bias current. On of the first output lights has a wavelength inside of a wavelength tolerance of phase-matching of the wavelength-converting element. The other has a wavelength outside of the wavelength tolerance of phase-matching.
摘要:
A light wavelength converting apparatus includes a semiconductor laser having a gain region, a phase region, and a distributed Bragg reflection (DBR) region, a nonlinear optical device for receiving fundamental-wave light emitted from the semiconductor laser and outputting second harmonic wave light, a first optical detector for monitoring an output of the fundamental-wave light, a second optical detector for monitoring the second harmonic wave light, and a control portion for controlling at least a drive current for driving the semiconductor laser. The control portion includes a control parameter determiner, and a wavelength controller. The control parameter determiner changes a DBR current supplied to the DBR region and a phase current supplied to the phase region to obtain a changing point that corresponds to a discontinuous change in an electrical signal from the first optical detector, and determines a control parameter for controlling the DBR current and the phase current such that the relationship between the DBR current and the phase current is not located on the changing point. The wavelength controller controls the DBR current and the phase current pursuant to the control parameter such that an oscillation wavelength of the semiconductor laser can be continuously controlled.