摘要:
A prepreg is provided that has excellent processability and handleability and that can be processed into a cured product with high heat resistance. Also provided is a method to produce such a prepreg in an industrially advantageous way without being restricted by the types and contents of the matrix resin components used. The prepreg includes at least components [A] to [D] as given below and a preliminary reaction product that is a reaction product of the component [B] and the component [C], at least one surface resin in the prepreg having a storage elastic modulus G′ in the range of 1.0×103 to 2.0×108 Pa as measured at a temperature of 40° C. and an angular frequency in the range of 0.06 to 314 rad/s: [A] carbon fiber, [B] epoxy resin comprising a m- or p-aminophenol epoxy resin [b1] and either a glycidyl ether epoxy resin or a glycidyl amine epoxy resin [b2] that has two or more glycidyl groups in a molecule, [C] curing agent, and [D] thermoplastic resin.
摘要:
A prepreg having a high processability and laminating performance in an automated lay-up device and serving to produce a cured product having good physical properties is described, and also a method for the production thereof, the prepreg comprising at least the components [A] to [E] listed blow and having a structure incorporating a first layer composed mainly of the component [A] and a first epoxy resin composition that contains the components [B] to [D] but is substantially free of the component [E] and a second layer composed mainly of a second epoxy resin composition that contains the components [B] to [E] and disposed adjacent to each surface of the first layer: [A] carbon fiber, [B] epoxy resin, [C] curing agent, [D] thermoplastic resin, and [E] particles containing a thermoplastic resin as primary component and having a volume-average particle diameter of 5 to 50 μm.
摘要:
The invention provides a prepreg that can give a fiber-reinforced composite material exhibiting stable and excellent interlaminar fracture toughness and impact resistance under wide molding conditions. The prepreg includes at least a reinforcement fiber [A], a thermosetting resin [B], and the following component [C] wherein 90% or more of the material [C] is present inside a region of the prepreg that extends from any surface of the prepreg to a prepreg site having, from the surface, a depth of 20% of the thickness of the prepreg. The component [C] satisfies requirements that (i) the storage elastic modulus G′ of the material constituting the particles is more than 1 MPa, and 70 MPa or less at 180° C., and that (ii) the ratio of the storage elastic modulus G′ of the material constituting the particles at 160° C. to the storage elastic modulus G′ of the material at 200° C. ranges from 1 to 5; and is insoluble in the thermosetting resin [B].
摘要:
A process of producing polylactic acid-based resin microparticles includes a dissolving step that forms a system, which can cause phase separation into two phases of a solution phase mainly composed of polylactic acid-based resin (A) having an enthalpy of fusion of less than 5 J/g and a solution phase mainly composed of polymer (B) different from polylactic acid-based resin, by dissolving the polylactic acid-based resin (A) and the polymer (B) different from polylactic acid-based resin in an ether-based organic solvent (C); an emulsion-forming step that forms an emulsion by applying a shear force to the system; and a microparticle-forming step that precipitates polylactic acid-based resin microparticles by contacting the emulsion with a poor solvent which has lower solubility of the polylactic acid-based resin (A) than the ether-based organic solvent (C).
摘要:
A prepreg having high processability and laminating performance and a method to produce such a prepreg is described, the prepreg comprising at least the components [A] to [E] shown below, and having a structure incorporating a first layer composed mainly of the component [A] and a first epoxy resin composition that contains the components [B] to [D] but which is substantially free of the component [E], and a second layer composed mainly of a second epoxy resin composition that contains the components [B] to [E],
[A] carbon fiber, [B] epoxy resin, [C] curing agent, [D] thermoplastic resin, and [E] particles containing a thermoplastic resin as primary component and having a volume-average particle diameter of 5 to 50 μm.
摘要:
Composite polyamide fine particles include a polyamide (A1) which has a melting point or a glass transition temperature of over 100° C. and a polymer (A2) which is different from the polyamide (A1). The composite polyamide fine particles have: a dispersion structure in which a plurality of domains each having an average particle diameter of 0.05 to 100 μm whose main component is the polymer (A2) are dispersed in a polyamide (A1) based matrix; an average particle diameter of 0.1 to 500 μm; and a sphericity of 80 or more.
摘要:
A prepreg is provided that has excellent processability and handleability and that can be processed into a cured product with high heat resistance. Also provided is a method to produce such a prepreg in an industrially advantageous way without being restricted by the types and contents of the matrix resin components used. The prepreg includes at least components [A] to [D] as given below and a preliminary reaction product that is a reaction product of the component [B] and the component [C], at least one surface resin in the prepreg having a storage elastic modulus G′ in the range of 1.0×103 to 2.0×108 Pa as measured at a temperature of 40° C. and an angular frequency in the range of 0.06 to 314 rad/s: [A] carbon fiber, [B] epoxy resin, [C] curing agent, and [D] thermoplastic resin.
摘要:
A prepreg is provided that has excellent processability and handleability and that can be processed into a cured product with high heat resistance. Also provided is a method to produce such a prepreg in an industrially advantageous way without being restricted by the types and contents of the matrix resin components used. The prepreg includes at least components [A] to [D] as given below and a preliminary reaction product that is a reaction product of the component [B] and the component [C], at least one surface resin in the prepreg having a storage elastic modulus G′ in the range of 1.0×103 to 2.0×108 Pa as measured at a temperature of 40° C. and an angular frequency in the range of 0.06 to 314 rad/s: [A] carbon fiber, [B] epoxy resin, [C] curing agent, and [D] thermoplastic resin.
摘要:
A first epoxy resin composition is described that includes [A] at least one epoxy resin, [B] at least two hardeners comprising [B-1] at least a first hardener and [B-2] at least a second hardener different from the first hardener, and [C] at least one accelerator, wherein the epoxy resin composition satisfies 5.0>|T1−T2|, where [A], [B], [C], T1 and T2 are as defined. A second epoxy resin composition is described that includes [A] at least one epoxy resin, [B] at least two hardeners comprising [B-1] at least one amine compound and [B-2] at least one organic acid hydrazide compound, and [C] at least one accelerator comprising [C-1] at least one organophosphorus compound, where [A], [B] and [C-1] are as defined. A prepreg comprising reinforcing fiber bundles impregnated with the first epoxy resin or the second epoxy resin is also described as well as a fiber-reinforced composite material.
摘要:
A prepreg having high processability and laminating performance and a method to produce such a prepreg in an industrially advantageous way is described, the prepreg comprising at least the components [A] to [E] shown below, and having a structure incorporating a first layer composed mainly of the component [A] and a first epoxy resin composition that contains the components [B] to [D] but which is substantially free of the component [E], and a second layer composed mainly of a second epoxy resin composition that contains the components [B] to [E] and which is disposed adjacent to each surface of the first layer, the second epoxy resin composition being characterized in that its component [D] has a weight-average molecular weight of 2,000 to 30,000 g/mol and accounts for 5 to 15 parts by mass relative to the total quantity of its components [B] to [E], which accounts for 100 parts by mass, [A] carbon fiber, [B] epoxy resin, [C] curing agent, [D] thermoplastic resin, and [E] particles containing a thermoplastic resin as primary component and having a volume-average particle diameter of 5 to 50 μm.