摘要:
A magnetic resonance imaging apparatus according to an embodiment includes control circuitry and processing circuitry. The control circuitry executes a first pulse sequence performing MR (Magnetic Resonance) spectroscopy and configured to execute a second pulse sequence applying an MT (Magnetization Transfer) pulse. The processing circuitry causes a display to present first data acquired based on the first pulse sequence and second data acquired based on the second pulse sequence.
摘要:
Chemical exchange saturation transfer (CEST) effects are enhanced by forming, for each of a plurality of magnetization transfer (MT) offset frequencies within a specified first range, a respective image representing CEST effects. A subset of the formed CEST images is displayed and a preferred or optimum one is selected from a display screen. The thus identified target frequency is then used to generate a composite enhanced CEST image based upon a combination of formed CEST images having MT frequencies within a specified second, smaller range, around the identified target frequency.
摘要:
Devices and methods are provided for analyzing images from a magnetic resonance (MR) system. The device includes at least one hardware processor coupled with a storage system accessible to the at least one hardware processor. The device further includes a display in communication with the at least one hardware processor. The device receives a plurality of non-contrast MR images in a region of interest (ROI). The device obtains blood flow signals from the plurality of non-contrast MR images. The device identifies an abnormal segment by analyzing the blood flow signals. The device displays the non-contrast MR images by a highlighted segment in at least one of the non-contrast MR images to indicate the abnormal segment on the display.
摘要:
A magnetic resonance imaging (MRI) system, method and/or computer readable storage medium is configured to effect QISS (quiescent interval single shot) MR imaging (e.g., MR angiography or MRA) where an optimized flip angle for one or more initial saturation pulses minimizes background signal from tissue and/or venous blood. Upon expiration of first configurable time interval from a start of a scan interval, at least one saturation pulse having a flip angle greater than ninety degrees is applied so that longitudinal magnetization of background tissue and venous blood in the selected area is approximately at a null value at the beginning of a readout time (occurring upon expiry of a second time interval) and/or when a lowest frequency of k-space data is acquired for the selected area.
摘要:
Elicited MRI signals are processed into MR image data in conjunction (a) with use of an initial spatially-selective RF tag pulse (tag-on) and (b) without use of an initial spatially-selective NMR RF tag pulse (tag-off) in respectively corresponding data acquisition subsequences. Multi-dimensional tag-on and tag-off data acquisition subsequences are used for each of plural time-to-inversion (TI) intervals without using an injected contrast agent. Acquired image data sets are subtracted for each TI interval to produce difference values as a function of time representing blood perfusion for the ROI that differentiates between normal, ischemic and infarct tissues.
摘要:
A magnetic resonance imaging apparatus includes a sequence controller. The sequence controller is configured to apply MT (Magnetization Transfer) pulses having a frequency different from a resonance frequency of free water protons and then acquires magnetic resonance signals of an object to be imaged. The sequence controller acquires the magnetic resonance signals for each of multiple frequencies while changing the frequency of MT pulses within a frequency band based on a T2 relaxation time of restricted protons contained in the object to be imaged.
摘要:
A magnetic resonance imaging (MRI) system, method and/or computer readable medium is configured reduce specific absorption rate (SAR) in Fast Advanced Spin Echo (FASE) or Single-shot Fast Spin Echo (SS-FSE) imaging used, for example, in non-contrast magnetic resonance angiography (NC-MRA) techniques like fresh blood imaging (FBI). Within RF pulse sequences used to acquire echo data, the refocusing flip angles may be varied in the phase encode direction, and/slice encode direction, such that the refocusing pulse (or pulses) that map echo signals to the k-space center region larger refocusing flip angles than refocusing pulses used to generate echo signals that map to other areas of k-space. In some instances, the TR interval also may be varied for RF pulse sequences such that central K-space have a longer TR than the slices further towards the ends.
摘要:
A magnetic resonance imaging apparatus according to an embodiment includes control circuitry and processing circuitry. The control circuitry executes a first pulse sequence performing MR (Magnetic Resonance) spectroscopy and configured to execute a second pulse sequence applying an MT (Magnetization Transfer) pulse. The processing circuitry causes a display to present first data acquired based on the first pulse sequence and second data acquired based on the second pulse sequence.
摘要:
A magnetic resonance imaging apparatus according to an embodiment includes sequence control circuitry and processing circuitry. The sequence control circuitry executes a first pulse sequence and a second pulse sequence, the first pulse sequence including a first spoiler pulse serving as a dephasing gradient pulse of a first amount, the second pulse sequence including a second spoiler pulse serving as a dephasing gradient pulse of a second amount being different from the first amount or the second pulse sequence not including a spoiler pulse serving as a dephasing gradient pulse. The processing circuitry performs a subtraction operation between a first data obtained from the first pulse sequence and a second data obtained from the second pulse sequence, thereby generating an image.
摘要:
A magnetic resonance imaging apparatus according to an embodiment includes sequence control circuitry and processing circuitry. The sequence control circuitry performs first data acquisition in a full k-space and performs a plurality of second data acquisition in partial k-spaces, each of the partial k-spaces being smaller than the entirety of the full k-space. The processing circuitry generates an image, based on data acquired from the first data acquisition and a plurality of pieces of data acquired from the plurality of second data acquisition.