摘要:
A radiation image pickup apparatus allowed to restore a change in characteristics in a pixel transistors caused by radiation, and a method of driving the same are provided. The radiation image pickup apparatus includes: a pixel section including a plurality of unit pixels and generating an electrical signal based on incident radiation, each of the unit pixels including one or more pixel transistors and a photoelectric conversion element; a drive section for selectively driving the unit pixels of the pixel section; and a characteristic restoring section including a first constant current source for annealing and a selector switch for changing a current path from the unit pixels to the first constant current source at the time of non-measurement of the radiation, and allowing an annealing current to flow through the pixel transistor, thereby restoring characteristics of the pixel transistor.
摘要:
Disclosed herein is a photoelectric conversion element including: a first semiconductor layer of a first conductivity type provided above a substrate; a second semiconductor layer of a second conductivity type provided in a higher layer than the first semiconductor layer; a third semiconductor layer of a third conductivity type provided between the first and second semiconductor layers and lower in electrical conductivity than the first and second semiconductor layers; and a light-shielding layer provided between the substrate and first semiconductor layer.
摘要:
A photoelectric conversion element includes a first semiconductor layer that exhibits a first conductivity type and is provided in a selective area over a substrate, a second semiconductor layer that exhibits a second conductivity type and is disposed opposed to the first semiconductor layer, and a third semiconductor layer that is provided between the first and second semiconductor layers and exhibits a substantially intrinsic conductivity type. The third semiconductor layer has at least one corner part that is not in contact with the first semiconductor layer.
摘要:
A radiation image pickup apparatus allowed to restore a change in characteristics in a pixel transistors caused by radiation, and a method of driving the same are provided. The radiation image pickup apparatus includes: a pixel section including a plurality of unit pixels and generating an electrical signal based on incident radiation, each of the unit pixels including one or more pixel transistors and a photoelectric conversion element; a drive section for selectively driving the unit pixels of the pixel section; and a characteristic restoring section including a first constant current source for annealing and a selector switch for changing a current path from the unit pixels to the first constant current source at the time of non-measurement of the radiation, and allowing an annealing current to flow through the pixel transistor, thereby restoring characteristics of the pixel transistor.
摘要:
Disclosed herein is a photoelectric conversion element including: a first semiconductor layer of a first conductivity type provided above a substrate; a second semiconductor layer of a second conductivity type provided in a higher layer than the first semiconductor layer; a third semiconductor layer of a third conductivity type provided between the first and second semiconductor layers and lower in electrical conductivity than the first and second semiconductor layers; and a light-shielding layer provided between the substrate and first semiconductor layer.
摘要:
A photoelectric conversion element includes a first semiconductor layer that exhibits a first conductivity type and is provided in a selective area over a substrate, a second semiconductor layer that exhibits a second conductivity type and is disposed opposed to the first semiconductor layer, and a third semiconductor layer that is provided between the first and second semiconductor layers and exhibits a substantially intrinsic conductivity type. The third semiconductor layer has at least one corner part that is not in contact with the first semiconductor layer.
摘要:
Disclosed herein is a transistor including: a semiconductor layer; a first gate insulation film and a first interlayer insulation film which are provided on a specific surface side of the semiconductor layer; a first gate electrode provided at a location between the first gate insulation film and the first interlayer insulation film; an insulation film provided on the other surface side of the semiconductor layer; source and drain electrodes provided by being electrically connected to the semiconductor layer; and a shield electrode layer provided in such a way that at least portions of the shield electrode layer face edges of the first gate electrode, wherein at least one of the first gate insulation film, the first interlayer insulation film and the insulation film include a silicon-oxide film.
摘要:
Touch sensor methods and apparatus are provided. A first photodiode includes an i-region of a first length. A second photodiode includes an i-region with a second length. A sensing component including a capacitive element is operably coupled to the first photodiode and the second photodiode. The first length of the i-region of the first photodiode is different than the second length of the i-region of the second photodiode.
摘要:
A radiographic image-pickup device includes: a photoelectric conversion layer; a wavelength conversion layer provided on the photoelectric conversion layer and converting a wavelength of radiation into a wavelength within a sensitivity band of the photoelectric conversion layer; and a low-refractive-index layer provided between the photoelectric conversion layer and the wavelength conversion layer, and having a refractive index lower than a refractive index of each of the photoelectric conversion layer and the wavelength conversion layer.
摘要:
A light-receiving element includes: a first-conductivity-type semiconductor region configured to be formed over an element formation surface; a second-conductivity-type semiconductor region configured to be formed over the element formation surface; an intermediate semiconductor region configured to be formed over the element formation surface between the first-conductivity-type semiconductor region and the second-conductivity-type semiconductor region, and have an impurity concentration lower than impurity concentrations of the first-conductivity-type semiconductor region and the second-conductivity-type semiconductor region. The light-receiving element further includes: a first electrode configured to be electrically connected to the first-conductivity-type semiconductor region; a second electrode configured to be electrically connected to the second-conductivity-type semiconductor region; and a control electrode configured to be formed in an opposed area that exists on the element formation surface.