Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.
Abstract:
A variety of methods and devices for mitigating power train vibration during skip fire operation of an engine are described. In one aspect, the slip of a drive train component (such as a torque converter clutch) is based at least in part upon a skip fire characteristic (such as firing fraction, selected firing sequence/pattern, etc.) during skip fire operation of an engine. The modulation of the drive train component slip can also be varied as a function of one or more engine operating parameters such as engine speed and/or a parameter indicative of the output of fired cylinders (such as mass air charge).
Abstract:
A system and method of integrating an engine having dynamic skip fire control with an exhaust gas recirculation system in a turbocharged internal combustion engine is described. An engine control system determines an appropriate firing pattern based at least in part on a desired exhaust gas recirculation flow rate. Signals from sensors in the intake manifold and exhaust system may also be used as part of a feedback loop to determine a desired exhaust gas recirculation flow rate.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
A vehicle, engine controller and method for coordinating direct split injection of two or more pulses of fuel during a working cycle of a reactivated cylinder which was deactivated in a previous working cycle is described. By using split injection for the reactivated cylinder, the particulate matter and particulate number (“PM/PN”) generated by the reactivated cylinder is reduced.
Abstract:
In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.
Abstract:
Methods and arrangements are described for controlling transitions between firing fractions during skip fire operation of an engine in order to help smooth the transitions. Generally, firing fractions transitions are implemented gradually, preferably in a manner that relatively closely tracks manifold filling dynamics. In some embodiments, the commanded firing fraction is altered each firing opportunity. Another approach contemplates altering the commanded firing fraction by substantially the same amount each firing opportunity for at least a portion of the transition. These approaches work particularly well when the commanded firing fraction is provided to a skip fire controller that includes an accumulator functionality that tracks the portion of a firing that has been requested, but not delivered, or vice versa. In various embodiments, commanded firing fraction changes are delayed relative to initiation of the change in throttle position to help compensate for inherent delays associated with changing the manifold air pressure.