Abstract:
The present invention relates, e.g., to a method for determining the size distribution of DNA molecules in a sample comprising cell-free nucleic acid, comprising labeling the DNA with a fluorescent dye in a stoichiometric manner, subjecting the DNA to molecular spectroscopy (e.g., cylindrical illumination confocal spectroscopy), analyzing suitable fluorescent burst parameters of the labeled DNA, and conducting single molecule DNA integrity analysis of the labeled DNA molecules in the sample. In one embodiment of the invention, the method is used as a diagnostic method for detecting cancer.
Abstract:
A cylindrical illumination confocal spectroscopy system has a fluidic device having a fluid channel defined therein, an objective lens unit arranged proximate the fluidic device, an illumination system in optical communication with the objective lens unit to provide light to illuminate a sample through the objective lens unit, and a detection system in optical communication with the objective lens unit to receive at least a portion of light that passes through the objective lens unit from the sample. The illumination system includes a beam-shaping lens unit constructed and arranged to provide a substantially planar illumination beam that subtends across, and is longer than, a lateral dimension of the fluid channel.
Abstract:
A microfluidic device for a confocal fluorescence detection system has an input channel defined by a body of the microfluidic device, a sample concentration section defined by the body of the microfluidic device and in fluid connection with the input channel, a mixing section defined by the body of the microfluidic device and in fluid connection with the concentration section, and a detection region that is at least partially transparent to illumination light of the confocal fluorescence detection system and at least partially transparent to fluorescent light when emitted from a sample under observation as the sample flows through the detection region.
Abstract:
A cylindrical illumination confocal spectroscopy system has a fluidic device having a fluid channel defined therein, an objective lens unit arranged proximate the fluidic device, an illumination system in optical communication with the objective lens unit to provide light to illuminate a sample through the objective lens unit, and a detection system in optical communication with the objective lens unit to receive at least a portion of light that passes through the objective lens unit from the sample. The illumination system includes a beam-shaping lens unit constructed and arranged to provide a substantially planar illumination beam that subtends across, and is longer than, a lateral dimension of the fluid channel, the substantially planar illumination beam having a diffraction limited thickness in a direction substantially orthogonal to the lateral dimension of the fluid channel. The substantially planar illumination beam incident upon the fluidic device has a width that is substantially longer than the lateral dimension of the fluid channel such that the substantially planar illumination beam has an illumination intensity that is uniform across the lateral dimension of the fluid channel to within ±10%. The detection system comprises an aperture stop defining a substantially rectangular aperture having a longitudinal dimension and a transverse dimension. The aperture stop is arranged so that the substantially rectangular aperture is confocal with an illuminated portion of the fluid channel such that the transverse dimension of the substantially rectangular aperture substantially subtends the lateral dimension of the fluid channel without extending substantially beyond the fluid channel and allows light to pass from only a uniform excitation region while occluding light from outside the uniform excitation region, and the lateral dimension of the substantially rectangular aperture substantially matches the diffraction limited thickness of the planar illumination beam.
Abstract:
The present invention relates, e.g., to a method for determining the size distribution of DNA molecules in a sample comprising cell-free nucleic acid, comprising labeling the DNA with a fluorescent dye in a stoichiometric manner, subjecting the DNA to molecular spectroscopy (e.g., cylindrical illumination confocal spectroscopy), analyzing suitable fluorescent burst parameters of the labeled DNA, and conducting single molecule DNA integrity analysis of the labeled DNA molecules in the sample. In one embodiment of the invention, the method is used as a diagnostic method for detecting cancer.
Abstract:
A microfluidic device for a confocal fluorescence detection system has an input channel defined by a body of the microfluidic device, a sample concentration section defined by the body of the microfluidic device and in fluid connection with the input channel, a mixing section defined by the body of the microfluidic device and in fluid connection with the concentration section, and a detection region that is at least partially transparent to illumination light of the confocal fluorescence detection system and at least partially transparent to fluorescent light when emitted from a sample under observation as the sample flows through the detection region.
Abstract:
The present invention relates, e.g., to a method for detecting a nucleic acid molecule of interest in a sample comprising cell-free nucleic acids, comprising fluorescently labeling the nucleic acid molecule of interest, by specifically binding a fluorescently labeled nanosensor or probe to the nucleic acid of interest, or by enzymatically incorporating a fluorescent probe or dye into the nucleic acid of interest, illuminating the fluorescently labeled nucleic acid molecule, causing it to emit fluorescent light, and measuring the level of fluorescence by single molecule spectroscopy, wherein the detection of a fluorescent signal is indicative of the presence of the nucleic acid of interest in the sample.