Abstract:
A hydrogen permeation membrane is provided that can include a carbon-based material (C) and a ceramic material (BZCYT) mixed together. The carbon-based material can include graphene, graphite, carbon nanotubes, or a combination thereof. The ceramic material can have the formula BaZr1-x-y-zCexYyTzO3-δ, where 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.5, (x+y+z)>0; 0≤δ≤0.5, and T is Yb, Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, or a combination thereof. In addition, the BZYCT can be present in the C-BZCYT mixture in an amount ranging from about 40% by volume to about 80% by volume. Further, a method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
Abstract:
A hydrogen permeation membrane is provided that can include a carbon-based material (C) and a ceramic material (BZCYT) mixed together. The carbon-based material can include graphene, graphite, carbon nanotubes, or a combination thereof. The ceramic material can have the formula BaZr1-x-y-zCexYyTzO3-δ, where 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.5, (x+y+z)>0; 0≤δ≤0.5, and T is Yb, Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, or a combination thereof. In addition, the BZYCT can be present in the C-BZCYT mixture in an amount ranging from about 40% by volume to about 80% by volume. Further, a method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
Abstract:
A hydrocarbon generation system that combines a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This system can directly synthesize hydrocarbons from carbon dioxide and water. High temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process are integrated in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. The microtubular reactor can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.
Abstract:
A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr1-x-yYxTyO3-δ where 0≦x≦0.5, 0≦y≦0.5, (x+y)>0; 0≦δ≦0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
Abstract:
A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr1-x-yYxTyO3-δ where 0≦x≦0.5, 0≦y≦0.5, (x+y)>0; 0≦δ≦0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
Abstract:
A hydrocarbon generation system that combines a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This system can directly synthesize hydrocarbons from carbon dioxide and water. High temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process are integrated in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. The microtubular reactor can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.
Abstract:
A method for generating hydrocarbons using a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This method can directly synthesize hydrocarbons from carbon dioxide and water. The method integrates high temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. In practice, methods disclosed herein can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.