Abstract:
The invention relates to an engineered outer domain (eOD) of HIV gp120 and mutants thereof and methods of making and using the same. The mutant eODs may be advantageous for the elicitation of CD4-binding site (CD4bs)-directed broadly-neutralizing antibodies (bnAbs) and/or improve binding to mature VRC01 and/or improve binding to germline VRC01 and the germlines of other VH1-2 derived broadly-neutralizing antibodies. The mutant eODs may also include glycan-masking mutations on eOD. The present invention also includes fusions of eOD to various protein multimers to enhance immunogenicity as well as the design of cocktails of different eODs that represent the full diversity of HIV sequences within the VRC01 epitope and surroundings.
Abstract:
Synthetic nanostructures, polypeptides that are useful, for example, in making synthetic nanostructures, and methods for using such synthetic nanostructures are disclosed herein.
Abstract:
Disclosed herein are nanostructures and their use, where the nanostructures include (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first polypeptides; (b) a plurality of second assemblies, each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptide differs from the first polypeptide; wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form a nanostructure; and wherein the nanostructure displays multiple copies of one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragments thereof, on an exterior of the nanostructure.
Abstract:
Disclosed herein are nanostructures and their use, where the nanostructures include (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first polypeptides; (b) a plurality of second assemblies, each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptide differs from the first polypeptide; wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form a nanostructures; and wherein the nanostructure displays multiple copies of one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragments thereof, on an exterior of the nanostructure.
Abstract:
The invention relates to an engineered outer domain (eOD) of HIV gp120 and mutants thereof and methods of making and using the same. The mutant eODs may be advantageous for the elicitation of CD4-binding site (CD4bs)-directed broadly-neutralizing antibodies (bnAbs) and/or improve binding to mature VRC01 and/or improve binding to germline VRC01 and the germlines of other VH1-2 derived broadly-neutralizing antibodies. The mutant eODs may also include glycan-masking mutations on eOD. The present invention also includes fusions of eOD to various protein multimers to enhance immunogenicity as well as the design of cocktails of different eODs that represent the full diversity of HIV sequences within the VRC01 epitope and surroundings.
Abstract:
The invention relates to an engineered outer domain (eOD) of HIV gp120 and mutants thereof and methods of making and using the same. The mutant eODs may be advantageous for the elicitation of CD4-binding site (CD4bs)-directed broadly-neutralizing antibodies (bnAbs) and/or improve binding to mature VRC01 and/or improve binding to germline VRC01 and the germlines of other VH1-2 derived broadly-neutralizing antibodies. The mutant eODs may also include glycan-masking mutations on eOD. The present invention also includes fusions of eOD to various protein multimers to enhance immunogenicity as well as the design of cocktails of different eODs that represent the full diversity of HIV sequences within the VRC01 epitope and surroundings.
Abstract:
Disclosed herein are polypeptides comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS:1-84, 138-146, and 167-184, nanoparticles thereof, related nanoparticle compositions, and their use to treat or limit development of an infection.
Abstract:
The application discloses multimeric assemblies packaging one or more active component and their use to carry out nucleic acid regulation or gene editing.
Abstract:
Disclosed herein are nanostructures and their use, where the nanostructures include (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first polypeptides; (b) a plurality of second assemblies, each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptide differs from the first polypeptide; wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form a nanostructures; and wherein the nanostructure displays multiple copies of one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragments thereof, on an exterior of the nanostructure.
Abstract:
Synthetic nanostructures, polypeptides that are useful, for example, in making synthetic nanostructures, and methods for using such synthetic nanostructures are disclosed herein.