Abstract:
A process is presented for improving the feed to a cracking unit and a reforming unit from a naphtha feedstock. The process includes the use of a separation unit to generate a light naphtha feed and a heavy naphtha feed. The process further includes separating the light naphtha feed into a light naphtha feed comprising normal hydrocarbons and a light naphtha feed comprising non-normal hydrocarbons. The light naphtha feed comprising normal hydrocarbon is passed to the cracking unit and the heavy naphtha feed is passed to the reforming unit.
Abstract:
A process for increasing the yields of light olefins or shifting to increase the hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream, and to convert components from the reforming stream to the cracking stream.
Abstract:
A process is presented for recovering the components for a gasoline blending pool to meet the E70 specifications. The process includes the separation of the naphtha feedstock into a light naphtha stream and a heavy naphtha stream. The process further includes separating the light naphtha stream to recovery high quality non-normal hydrocarbons having normal boiling points above 70° C., and to separate for adding to the feed to the reforming unit, hydrocarbons that have lower boiling points.
Abstract:
A process is presented for the production of light olefins. The process utilizes a SAPO-18 catalyst and is operated at an elevated pressure. The process generates higher concentrations of heavier olefins which can then be processed to generate light olefins. The processing of the heavier olefins can include metathesis reactions and olefin cracking processes.
Abstract:
A process for converting naphtha to light olefins comprises contacting a naphtha stream with a zeolitic catalyst to produce a light paraffin stream at conditions which dehydrogenate the naphtha to olefins, interconvert the olefins to lighter olefins and hydrogenate the lighter olefins to produce a light paraffin stream comprising ethane and propane. The catalyst may comprise a zeolite and a metal.
Abstract:
A process for converting naphtha to light olefins comprises contacting a naphtha stream with a zeolitic catalyst to produce a light paraffin stream. The light paraffin may be separated into an ethane stream and a propane stream. The ethane in the ethane stream may be converted into ethylene, and the propane in the propane in the propane stream may be converted into propylene. The light paraffin stream may also be separated into a heavy stream which may be recycled back to the contacting step.
Abstract:
A process for converting naphtha to light olefins comprises contacting a naphtha stream with a zeolitic catalyst to produce a light paraffin stream at conditions which dehydrogenate the naphtha to olefins, interconvert the olefins to lighter olefins and hydrogenate the lighter olefins to produce a light paraffin stream comprising ethane and propane. The catalyst may comprise a zeolite and a metal.
Abstract:
A process is presented for the production of light olefins. The process utilizes a SAPO-18 catalyst and is operated at an elevated pressure. The process generates higher concentrations of heavier olefins which can then be processed to generate light olefins. The processing of the heavier olefins can include metathesis reactions and olefin cracking processes.
Abstract:
A method of making light olefins is described. The method involves producing an alkyne in a pyrolysis process. The alkyne is catalytically hydrogenated in a hydrogenation zone to produce a product stream containing a light olefin. A byproduct stream from the pyrolysis process comprises carbon oxide and hydrogen. The byproduct stream is treated to convert the carbon oxide and the hydrogen to an oxygenated product in a carbon oxide conversion zone, which can then be converted to an olefin in an oxygenate to olefin process.
Abstract:
A process for increasing the yields of light olefins and the yields of aromatics from a hydrocarbon stream is presented. The process includes a first separation to direct the light components that are not reformable to a cracking unit, with the remainder passed to a second separation unit. The second separation unit extracts normal components from the hydrocarbon stream to pass to the cracking unit. The resulting hydrocarbon stream with reduced light ends and reduced normals is passed to a reforming unit.