Abstract:
The present disclosure provides a method for freeze-drying cells in a hydrogel comprising nanofibrillar cellulose, the method comprising providing a hydrogel comprising nanofibrillar cellulose, providing cells, combining the cells and the hydrogel comprising nanofibrillar cellulose to form a cell system, and freeze drying the cell system to obtain dried cells in a hydrogel comprising nanofibrillar cellulose. The present disclosure also provides a freeze-dried hydrogel comprising nanofibrillar cellulose and cells.
Abstract:
The present application relates to a medical hydrogel comprising nanofibrillar cellulose, wherein the hydrogel has a viscosity in the range of 2500-9000 Pa·s and a water retention value in the range of 30-100 g/g. The present application also relates to a method for preparing the medical hydrogel The present application relates to the medical hydrogel for use for treating wounds.
Abstract:
The present application provides a method for preparing a medical product for covering tissue, the method comprising providing nanofibrillar cellulose, providing a bioactive molecule, and covalently bonding the bioactive molecule to the nanofibrillar cellulose. The present application also provides a medical product for covering tissue comprising a bioactive molecule covalently bound to nanofibrillar cellulose.
Abstract:
Providing composite structures with micro contoured surface layer. There is provided a method to adjust roughness level of micro contoured surface layer when manufacturing a composite and products thereof. The micro contoured surface layer may cover all or at least part of the surface area of the composite product. The roughness level of micro contoured surface layer may be increased or decreased by controlling the process parameters. In particular, there is provided a method to increase the roughness level of composite material having a primary surface layer with a primary surface roughness by softening the primary surface layer of the composite material by heating and providing a secondary surface layer of the composite material surface with a secondary surface roughness by cooling the softened surface layer. Further, there are provided methods to determine and visualize the level of micro contoured surface layer roughness on a composite product surface.
Abstract:
One embodiment provides a method for preparing a medical product, said method comprising providing an aqueous dispersion of nanofibrillar cellulose, providing a layer of gauze, impregnating the layer of gauze with the aqueous dispersion of nanofibrillar cellulose, and dewatering the impregnated gauze, to obtain the medical product. One embodiment provides a medical product comprising a layer of gauze impregnated with nanofibrillar cellulose.
Abstract:
The invention relates to a composite comprising matrix material and organic natural fiber material. The composite may be a compound, a granulate, or at least a part of a sound reproduction device. The composite may be made by injection molding. According to an embodiment a composite comprises matrix material and organic natural fiber based material, wherein the matrix material comprises a thermoplastic polymer matrix. The composite may comprise a relative sound wave resistance of 1500-5000. The composite may comprise a relative damping of sound radiation of 1.5-5.0. The composite may comprise a dynamic modulus of 2000-11000 measured according to ISO 6721-3. The composite may comprise a relative acoustic quality factor of 5-200. The composite may comprise a relative factor of viscous damping of 0.500-0.005.
Abstract:
The present application relates to a medical hydrogel comprising nanofibrillar cellulose, wherein the hydrogel has a viscosity in the range of 2500-9000 Pa·s and a water retention value in the range of 30-100 g/g. The present application also relates to a method for preparing the medical hydrogel The present application relates to the medical hydrogel for use for treating wounds.
Abstract:
The application relates to a composition and manufacturing and a use of a composite structure having vibrational properties and to a product thereof. According to an embodiment a composition comprises a matrix material and organic natural fiber material, wherein speed of sound is arranged to be different in different directions in the composition.
Abstract:
The invention relates to a composite product. According to the invention the composite product contains a polymer based material and an organic natural fiber material, and the organic natural fiber material has been mixed with the polymer based material to form a mixture, and the composite product having an pore volume has been formed from the mixture so that the pore volume of the composite product is under 15%. Further, the invention relates to method for manufacturing a composite product, a use of the composite product and a final product.
Abstract:
The present application provides a method for preparing nanofibrillar cellulose product, the method comprising providing nanofibrillar cellulose, providing multivalent cations, contacting the nanofibrillar cellulose with the multivalent cations, and allowing reacting for a period of time to obtain cross-linked nanofibrillar cellulose product. The present application also provides a nanofibrillar cellulose product comprising nanofibrillar cellulose and multivalent cations, wherein the nanofibrillar cellulose is crosslinked by the multivalent cations.