Abstract:
A read only memory (ROM) is provided in the present invention, which includes a plurality of bit lines extending in a first direction, a plurality of source lines extending in parallel to the plurality of bit lines, and a plurality of word lines extending in a second direction perpendicular to the first direction. Each two ROM cells share an active area and are electrically coupled to one of the plurality of source lines by a common source line contact.
Abstract:
A method for controlling voltage of a doped well in a substrate is provided. The substrate and the doped well are in different conductive type. The method includes applying a substrate voltage to the substrate while a well power for applying a well voltage to the doped well is turned off. The method also includes detecting a voltage level of one of the doped well and the substrate to judge whether or not a voltage target is reached. The well power is turned on to apply the well voltage to the doped well when the voltage level as detected reaches to the voltage target.
Abstract:
A method for controlling voltage of a doped well in a substrate is provided. The substrate and the doped well are in different conductive type. The method includes applying a substrate voltage to the substrate while a well power for applying a well voltage to the doped well is turned off. The method also includes detecting a voltage level of one of the doped well and the substrate to judge whether or not a voltage target is reached. The well power is turned on to apply the well voltage to the doped well when the voltage level as detected reaches to the voltage target.
Abstract:
A sense amplifier circuit may be used for read operation of a non-volatile memory. The sense amplifier circuit includes of a first pre-charge circuit, a second pre-charge circuit, a bias circuit, an enable circuit, a current mirror, a first comparator, a second comparator, a buffer and a counter. The current mirror is able to amplify a cell current of a memory cell to prevent error and shorten or maintain access time as erase count of the memory cell increases.
Abstract:
A sense amplifier circuit may be used for read operation of a non-volatile memory. The sense amplifier circuit includes of a first pre-charge circuit, a second pre-charge circuit, a bias circuit, an enable circuit, a current mirror, a first comparator, a second comparator, a buffer and a counter. The current mirror is able to amplify a cell current of a memory cell to prevent error and shorten or maintain access time as erase count of the memory cell increases.
Abstract:
A non-volatile memory includes a plurality of data storage units arranged in an array, a plurality of redundant data storage units arranged in at least one row and a plurality of redundant address storage units arranged in at least one row. A storage size of each of the data storage units is word. Each of the data storage units is addressable by a row address and a column address. One of the redundant data storage units in a first column is configured to substitute for one of the data storage units in a second column. One of the redundant address storage units in a third column is configured to record the row address representative of the substituted one of the data storage units.
Abstract:
A non-volatile memory includes a plurality of data storage units arranged in an array, a plurality of redundant data storage units arranged in at least one row and a plurality of redundant address storage units arranged in at least one row. A storage size of each of the data storage units is word. Each of the data storage units is addressable by a row address and a column address. One of the redundant data storage units in a first column is configured to substitute for one of the data storage units in a second column. One of the redundant address storage units in a third column is configured to record the row address representative of the substituted one of the data storage units.
Abstract:
A testing method for non-volatile memory includes writing a first set of data to a set of addresses in a non-volatile memory, reading a second set of data from the set of addresses, and writing the first set of data to the set of addresses again if the first set of data and the second set of data are not identical and number of times for writing the first set of data to the set of addresses is smaller than a predetermined number.
Abstract:
A supply voltage generation circuit includes a comparison unit, a voltage level control unit and a voltage regulator circuit. The comparison unit is configured to compare input data and output data of a memory array to each other and thereby generating a comparison result, wherein the output data are storage data stored in a plurality of memory units of the memory array processed by a program operation according to the input data, and the comparison result indicates the number of different bits existing between the output data and the input data. The voltage level control unit is configured to generate a control signal according to the comparison result. The voltage regulator circuit is configured to provide a supply voltage for the memory array and adjust the value of the supply voltage according to the control signal. A memory and an operation method of a supply generation circuit used for a memory array are also provided.
Abstract:
A read only memory (ROM) is provided in the present invention, which includes a plurality of bit lines extending in a first direction, a plurality of source lines extending in parallel to the plurality of bit lines, and a plurality of word lines extending in a second direction perpendicular to the first direction. Each two ROM cells share an active area and are electrically coupled to one of the plurality of source lines by a common source line contact.