Abstract:
An integrated circuit (IC) structure includes a substrate having several regions, several semiconductor devices formed at the substrate and respectively within the regions, and an ultra-deep (UD) trench isolation structure formed in the substrate. The substrate has a top surface and a bottom surface oppositely, and the UD trench isolation structure formed in the substrate surrounds peripheries of each of the regions for structurally and physically isolating the semiconductor devices within different regions. The UD trench isolation structure penetrates the substrate by extending from the top surface of the substrate to the bottom surface of the substrate.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a semiconductor layer on a substrate; removing part of the semiconductor layer and part of the substrate to form a trench; forming a liner in the trench; removing part of the liner to form a spacer adjacent to two sides of the trench; forming a conductive layer in the trench; forming a metal layer on the conductive layer; forming a mask layer on the metal layer; and patterning the mask layer, the metal layer, and the conductive layer to form a bit line structure.
Abstract:
A method for forming a complementary metal oxide semiconductor device is disclosed. First, a substrate having a first device region and a second device region is provided. A first trench is formed in the first device region and filled with a first material. A second trench is formed in the second device region and filled with a second material. The first material and the second material comprise different stresses. After that, a first gate structure and a second gate structure are formed on the first material and the second material and completely covering the first trench and the second trench, respectively.
Abstract:
According to an embodiment of the present invention, a method for fabricating semiconductor device includes the steps of: forming a semiconductor layer on a substrate; removing part of the semiconductor layer and part of the substrate to form a trench; forming a liner in the trench; removing part of the liner to form a spacer adjacent to two sides of the trench; and forming a bit line structure in the trench.
Abstract:
The present invention provides a method of fabricating a HV MOS transistor device, including forming a deep well in a substrate, and the deep well; forming a first doped region in the deep well, and the first doped region, wherein a doping concentration of the first doped region and a doping concentration of the deep well in at least one electric field concentration region has a first ratio, the doping concentration of the first doped region and the doping concentration of the deep well outside the electric field concentration region has a second ratio, and the first ratio is greater than the second ratio; and forming a high voltage well in the substrate, and forming a second doped region and a third doped region respectively in the deep well and in the high voltage well.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a semiconductor layer on a substrate; removing part of the semiconductor layer and part of the substrate to form a trench; forming a liner in the trench; removing part of the liner to form a spacer adjacent to two sides of the trench; forming a conductive layer in the trench; forming a metal layer on the conductive layer; forming a mask layer on the metal layer; and patterning the mask layer, the metal layer, and the conductive layer to form a bit line structure.
Abstract:
An integrated circuit (IC) structure includes a substrate having several regions, several semiconductor devices formed at the substrate and respectively within the regions, and an ultra-deep (UD) trench isolation structure formed in the substrate. The substrate has a top surface and a bottom surface oppositely, and the UD trench isolation structure formed in the substrate surrounds peripheries of each of the regions for structurally and physically isolating the semiconductor devices within different regions. The UD trench isolation structure penetrates the substrate by extending from the top surface of the substrate to the bottom surface of the substrate.
Abstract:
An integrated circuit (IC) structure includes a substrate having several regions, several semiconductor devices formed at the substrate and respectively within the regions, and an ultra-deep (UD) trench isolation structure formed in the substrate. The substrate has a top surface and a bottom surface oppositely, and the UD trench isolation structure formed in the substrate surrounds peripheries of each of the regions for structurally and physically isolating the semiconductor devices within different regions. The UD trench isolation structure penetrates the substrate by extending from the top surface of the substrate to the bottom surface of the substrate.
Abstract:
A complementary metal oxide semiconductor (CMOS) device is disclosed. The CMOS device includes a substrate with a first device region and a second device region formed thereon. A first isolation structure is formed in the first device region, and includes a first trench filled with a first material. A second isolation structure is formed in the second device region and includes a second trench filled with a second material. The first material and the second material have different stresses. A first gate structure is disposed atop the first material and completely covering the first trench. A second gate structure is disposed atop the second material and completely covering the second trench.
Abstract:
A semiconductor power device is provided, comprising a substrate of a first conductive type, a buffering layer of a second conductive type formed on the substrate, a voltage supporting layer formed on the buffering layer, and alternating sections of different conductive types formed at the substrate. The voltage supporting layer comprises first semiconductor regions of the first conductive type and second semiconductor regions of the second conductive type, wherein the first semiconductor regions and the second semiconductor regions are alternately arranged. The alternating section and the buffering layer form a segmented structure of alternated conductive types, which is used as an anode of the semiconductor device.