Abstract:
Uptake of hypoxia-sensitive PET tracers is dependent on tissue transport properties, specifically, distribution volume. Variability in tissue transport properties reduces the sensitivity of static PET imaging to hypoxia. When tissue transport (vd) effects are substantial, correlations between the two methods of determining hypoxic fractions are greatly reduced—that is, trapping rates k3 are only modestly correlated with tumour-to-blood ratio (TBR). In other words, the usefulness of dynamic- and static-PET based hypoxia surrogates, trapping rate k3 and TBR, in determining hypoxic fractions is reduced in regions where diffusive equilibrium is achieved slowly. A process is provided for quantifying hypoxic fractions using a novel biomarker for hypoxia, hypoxia-sensitive tracer binding rate kb, based on PET imaging data. The same formalism can be applied to model the kinetics of non-binding CT and MT contrast agents, giving histopathological information about the imaged tissue.
Abstract:
Various embodiments are described herein for a system and a method for obtaining samples of tissue for analysis by mass spectrometry. A region of interest can be identified in tissue using image data from a first imaging modality that is other than mass spectrometry. At least one tissue sample can be acquired using a tissue sampler from a sampling location related to the region of interest. Mass spectrum data can be generated for the acquired tissue samples using a mass spectrometer. In some embodiments, polarimetry may be used on a tissue slice, mass spectrometry may be performed on the same tissue slice and then H&E imaging may be performed on the same tissue slice.
Abstract:
A method and imaging system for operating imaging computed tomography using at least one radiation source and at least one detector to generate an image of an object. The method includes: defining desired image characteristics; and performing calculations to determine the pattern of fluence to be applied by the at least one radiation source, to generate said desired image quality or characteristics. Then, the at least one radiation source is modulated, to generate the intended pattern of fluence between the beam source and the object to be imaged. The desired image characteristics can provide at least one of: desired image quality in at least one defined region of interest; and at least one desired distribution of said image quality.
Abstract:
Various embodiments are described herein for sensors that may be used to measure radiation from radiation generating device. The sensors may use a collector plate electrode with first and second collection regions having shapes that are inversely related with one another to provide ion chambers with varying sample volumes along a substantial portion of the first and second collection regions which provides virtual spatial sensitivity during use.
Abstract:
An apparatus for high resolution positron emission tomography (PET) imaging. The apparatus includes at least a first detector and a second detector arranged to detect gamma rays traveling from a target area, the first detector and the second detector being a detector pair. There is at least one collimator for filtering gamma rays reaching the first and second detectors. The collimator defines respective passages filtering gamma rays reaching the respective first and second detectors, the passages being defined to filter for only gamma ray pairs traveling from the target area at a predetermined range of angles with respect to each other, the predetermined range of angles being in the range of 180°-θE, where θE is less than 1° and greater than 0°.
Abstract:
The present application relates to compositions comprising an iodinated contrast agent and indocyanine green co-encapsulated inside a liposomal carrier, various uses thereof as well as methods for their preparation.
Abstract:
The present application relates to compositions comprising an iodinated contrast agent and indocyanine green co-encapsulated inside a liposomal carrier, various uses thereof as well as methods for their preparation.
Abstract:
Various embodiments are described herein for a system and a method for obtaining samples of tissue for analysis by mass spectrometry. A region of interest can be identified in tissue using image data from a first imaging modality that is other than mass spectrometry. At least one tissue sample can be acquired using a tissue sampler from a sampling location related to the region of interest. Mass spectrum data can be generated for the acquired tissue samples using a mass spectrometer. In some embodiments. polarimetry may be used on a tissue slice, mass spectrometry may be performed on the same tissue slice and then H&E imaging may be performed on the same tissue slice.
Abstract:
Various embodiments are described herein for sensors that may be used to measure radiation from radiation generating device. The sensors may use a collector plate electrode with first and second collection regions having shapes that are inversely related with one another to provide ion chambers with varying sample volumes along a substantial portion of the first and second collection regions which provides virtual spatial sensitivity during use.
Abstract:
A method and imaging system for operating imaging computed tomography using at least one radiation source and at least one detector to generate an image of an object. The method includes: defining desired image characteristics; and performing calculations to determine the pattern of fluence to be applied by the at least one radiation source, to generate said desired image quality or characteristics. Then, the at least one radiation source is modulated, to generate the intended pattern of fluence between the beam source and the object to be imaged. The desired image characteristics can provide at least one of: desired image quality in at least one defined region of interest; and at least one desired distribution of said image quality.