摘要:
The hydrophobic and corrosion resistive film of cross-linked poly(hexafluoroisopropyl methacrylate) was prepared by photopolymerization. The starting materials were a monomer of 1,1,1,3,3,3-hexafluoroisopropyl methacrylate, a photoinitiator of hydroxycyclohexyl phenyl ketone, and a cross-linker of poly(ethyleneglycol diacrylate). Photopolymerization was used to start polymerization and to cure the polymer film on an aluminum surface. Drop-casting was used to deposit the fluoropolymer onto an aluminum substrate (AA 3003). The fluoropolymer film has high corrosion protection when measured by potentiodynamic polarization and open circuit potential techniques in an aqueous solution of 3.5% NaCl. Fourier-transform infrared spectroscopy was used to monitor the polymerization process. The dynamic contact angle technique was used to measure the hydrophobicity for the fluorinated polymer coating. Thermal stability of the fluorinated polymer was measured using thermogravimetric analysis. Treatment with strong acid followed by contact angle measurements before and after the treatment confirmed the chemical resistance for the coated aluminum.
摘要:
The hydrophobic and corrosion resistive film of cross-linked poly(hexafluoroisopropyl methacrylate) was prepared by photopolymerization. The starting materials were a monomer of 1,1,1,3,3,3-hexafluoroisopropyl methacrylate, a photoinitiator of hydroxycyclohexyl phenyl ketone, and a cross-linker of poly(ethyleneglycol diacrylate). Photopolymerization was used to start polymerization and to cure the polymer film on an aluminum surface. Drop-casting was used to deposit the fluoropolymer onto an aluminum substrate (AA 3003). The fluoropolymer film has high corrosion protection when measured by potentiodynamic polarization and open circuit potential techniques in an aqueous solution of 3.5% NaCl. Fourier-transform infrared spectroscopy was used to monitor the polymerization process. The dynamic contact angle technique was used to measure the hydrophobicity for the fluorinated polymer coating. Thermal stability of the fluorinated polymer was measured using thermogravimetric analysis. Treatment with strong acid followed by contact angle measurements before and after the treatment confirmed the chemical resistance for the coated aluminum.
摘要:
A phosphorescent chemosensor based on A Gold(I) complex stabilized in an aqueous polymer media. The complex exhibits strong red emission (λmax ˜690 nm) in solutions and is sensitive to sub-ppm/nM levels of silver ions. On addition of silver salt to the polymer-complex, a bright-green emissive adduct with peak maximum within 475-515 nm is developed. The silver adduct exhibits a four-fold increase in quantum yield (0.19±0.02) compared to polymer-complex alone (0.05±0.01), along with a corresponding increase in phosphorescence lifetime. The polymer-complex also exhibits sensitivity to higher concentrations (e.g., >1 mM) of other metal ions such as Tl+, Pb2+, and Gd3+. The sensing methodology is simple, fast, and convenient, and the results can be detected by the naked eye. Addition of EDTA restores the red emission of the complex. The complex can distinguish between silver ions and silver nanoparticles and can be used to remediate silver ions from the environment.
摘要:
Bidentate heteroleptic square planar complexes of (pyridyl)azolates possess optical and electrical properties that render them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes (“OLEDs”), including doping-free OLEDs. Preferred forms also demonstrate semiconducting behavior and may be useful in a variety of other applications. Within the general complexes of (pyridyl)azolates, the metal and the ligands may be varied to impart different optoelectronic properties.
摘要:
Size-tunable phosphorescent particles may be formed through self-assembly of biocompatible linear polymers, such as chitosan and other linear polymers, that bear positive surface charges, through polyelectrolytic complexation to a polyanionic metal phosphor, such as polyanionic gold(I) phosphor (AuP). The phosphorescent hydrogel nanoparticles and thin films thereof are useful for imaging, sensing of biological molecules, detection of hypoxia, and light-emitting devices. The phosphorescent hydrogel particles can be formed from a variety of linear polymers by physical cross-linking using polyelectrolytic light-emitting species, without the need for the phosphorescent complex to be entrapped in an existing microsphere or nanosphere polymer particle.
摘要:
Metal-inorganic frameworks (“MIFs”) having enhanced adsorption capabilities to hydrogen, CO, CO2, hydrocarbons, and a variety of other guest molecules are disclosed. All linkers in the MIFs contain metal complexes, comprising metal atoms and inorganic or organic ligands, instead of only organic ligands as linkers in metal-organic frameworks (MOFs). Compared to their MOF counterparts, MIFs with carbon-free or carbon-deficient chemical structure are expected to possess enhanced thermal stability, higher catalytic activity, and higher gas affinity and selectivity.
摘要:
Bidentate heteroleptic square planar complexes of (pyridyl)azolates possess optical and electrical properties that render them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes (“OLEDs”), including doping-free OLEDs. Preferred forms also demonstrate semiconducting behavior and may be useful in a variety of other applications. Within the general complexes of (pyridyl)azolates, the metal and the ligands may be varied to impart different optoelectronic properties.
摘要:
The present invention includes photochemical method of making hybrid metal-polymer microparticles in an aqueous, biocompatible solution by providing a metal (I) composition and one or more polymeric materials; applying an electromagnetic radiation to the metal (I) composition; converting the metal (I) composition to a metal (0) composition; forming one or more hybrid metal-polymer microparticles from the metal (0); capping the or more hybrid metal-polymer microparticles; and stabilizing the one or more hybrid metal-polymer microparticles with the one or more polymeric materials to prevent agglomeration.
摘要:
The present invention includes photochemical method of making hybrid metal-polymer microparticles in an aqueous, biocompatible solution by providing a metal (I) composition and one or more polymeric materials; applying an electromagnetic radiation to the metal (I) composition; converting the metal (I) composition to a metal (0) composition; forming one or more hybrid metal-polymer microparticles from the metal (0); capping the one or more hybrid metal-polymer microparticles; and stabilizing the one or more hybrid metal-polymer microparticles with the one or more polymeric materials to prevent agglomeration.
摘要:
Size-tunable phosphorescent particles may be formed through self-assembly of biocompatible linear polymers, such as chitosan and other linear polymers, that bear positive surface charges, through polyelectrolytic complexation to a polyanionic metal phosphor, such as polyanionic gold(I) phosphor (AuP). The phosphorescent hydrogel nanoparticles and thin films thereof are useful for imaging, sensing of biological molecules, detection of hypoxia, and light-emitting devices. The phosphorescent hydrogel particles can be formed from a variety of linear polymers by physical cross-linking using polyelectrolytic light-emitting species, without the need for the phosphorescent complex to be entrapped in an existing microsphere or nanosphere polymer particle.